Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym AlgoRNN
Project Recurrent Neural Networks and Related Machines That Learn Algorithms
Researcher (PI) Juergen Schmidhuber
Host Institution (HI) UNIVERSITA DELLA SVIZZERA ITALIANA
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Summary
Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BioProbe-PIT
Project Local molecular profiling of tumor tissue sections: towards personalized immunotherapy
Researcher (PI) Govindkrishna KAIGALA
Host Institution (HI) IBM RESEARCH GMBH
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Cancer heterogeneity has reinforced the need for personalized treatment modalities. Pre-therapeutic diagnostic testing of heterogeneous tumors helps avoid inefficacious treatments, optimizes targeted therapy, and improves quality of life. Within targeted therapy, immunotherapy has led to significant improvements in treatment outcomes and is swiftly being integrated in diagnostic workflows. In this context, routine diagnostic tests currently do not exist, and treatments are further challenged by heterogeneity. Spatially resolved molecular probing of tumors prior to treatment would allow prediction of patient response to immunotherapeutics.
We have been developing methods to perform local biochemical reactions at micrometer length scales using nanoliter volumes of biochemicals. These methods are implemented using a scanning probe technology – the microfluidic probe (MFP) – with devices, platforms and assays adapted for application on biological substrates. With this, we are working towards multi-modal molecular profiling of tumors – tissue microprocessing (TMP). Thus far, we have demonstrated TMP for local DNA and mRNA analysis on live cells, for patterning cells and for micro-immunohistochemical tests on tissues.
Here, we will leverage TMP concepts to work on the initial steps in pre-commercializing the MFP for diagnostic testing in immunotherapy. Specifically, we aim to
(1) develop assays for morphological and molecular analyses of pancreatic tissues using the MFP
(2) adapt the assays developed in (1) to be compatible with workflows of state-of-the-art genome and transcriptome analysis for molecular profiling of tumors in diagnostics
(3) validate these techniques for patient samples.
With this PoC grant, we envision to translate the MFP technology from the lab to the clinic for personalized immunotherapy.
Summary
Cancer heterogeneity has reinforced the need for personalized treatment modalities. Pre-therapeutic diagnostic testing of heterogeneous tumors helps avoid inefficacious treatments, optimizes targeted therapy, and improves quality of life. Within targeted therapy, immunotherapy has led to significant improvements in treatment outcomes and is swiftly being integrated in diagnostic workflows. In this context, routine diagnostic tests currently do not exist, and treatments are further challenged by heterogeneity. Spatially resolved molecular probing of tumors prior to treatment would allow prediction of patient response to immunotherapeutics.
We have been developing methods to perform local biochemical reactions at micrometer length scales using nanoliter volumes of biochemicals. These methods are implemented using a scanning probe technology – the microfluidic probe (MFP) – with devices, platforms and assays adapted for application on biological substrates. With this, we are working towards multi-modal molecular profiling of tumors – tissue microprocessing (TMP). Thus far, we have demonstrated TMP for local DNA and mRNA analysis on live cells, for patterning cells and for micro-immunohistochemical tests on tissues.
Here, we will leverage TMP concepts to work on the initial steps in pre-commercializing the MFP for diagnostic testing in immunotherapy. Specifically, we aim to
(1) develop assays for morphological and molecular analyses of pancreatic tissues using the MFP
(2) adapt the assays developed in (1) to be compatible with workflows of state-of-the-art genome and transcriptome analysis for molecular profiling of tumors in diagnostics
(3) validate these techniques for patient samples.
With this PoC grant, we envision to translate the MFP technology from the lab to the clinic for personalized immunotherapy.
Max ERC Funding
150 000 €
Duration
Start date: 2017-08-01, End date: 2018-07-31
Project acronym BORDER
Project Towards a decentred history of the Middle East: Transborder spaces, circulations, frontier effects and state formation, 1920-1946
Researcher (PI) Jordi TEJEL GORGAS
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Summary
While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Max ERC Funding
1 997 675 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BRAINCODES
Project Brain networks controlling social decisions
Researcher (PI) Christian Carl RUFF
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Successful social interactions require social decision making, the ability to guide our actions in line with the goals and expectations of the people around us. Disordered social decision making – e.g., associated with criminal activity or psychiatric illnesses – poses significant financial and personal challenges to society. However, the brain mechanisms that enable us to control our social behavior are far from being understood. Here I will take decisive steps towards a causal understanding of these mechanisms by elucidating the role of functional interactions in the brain networks responsible for steering strategic, prosocial, and norm-compliant behavior. I will employ a unique multi-method approach that integrates computational modeling of social decisions with new combinations of multimodal neuroimaging and brain stimulation methods. Using EEG-fMRI, I will first identify spatio-temporal patterns of functional interactions between brain areas that correlate with social decision processes as identified by computational modeling of behavior in different economic games. In combined brain stimulation-fMRI studies, I will then attempt to affect – and in fact enhance – these social decision-making processes by modulating the identified brain network patterns with novel, targeted brain stimulation protocols and measuring the resulting effects on behavior and brain activity. Finally, I will examine whether the identified brain network mechanisms are indeed related to disturbed social decisions in two psychiatric illnesses characterized by maladaptive social behavior (post-traumatic stress disorder and autism spectrum disorder). My proposed work plan will generate a causal understanding of the brain network mechanisms that allow humans to control their social decisions, thereby elucidating a biological basis for individual differences in social behavior and paving the way for new perspectives on how disordered social behavior may be identified and hopefully remedied.
Summary
Successful social interactions require social decision making, the ability to guide our actions in line with the goals and expectations of the people around us. Disordered social decision making – e.g., associated with criminal activity or psychiatric illnesses – poses significant financial and personal challenges to society. However, the brain mechanisms that enable us to control our social behavior are far from being understood. Here I will take decisive steps towards a causal understanding of these mechanisms by elucidating the role of functional interactions in the brain networks responsible for steering strategic, prosocial, and norm-compliant behavior. I will employ a unique multi-method approach that integrates computational modeling of social decisions with new combinations of multimodal neuroimaging and brain stimulation methods. Using EEG-fMRI, I will first identify spatio-temporal patterns of functional interactions between brain areas that correlate with social decision processes as identified by computational modeling of behavior in different economic games. In combined brain stimulation-fMRI studies, I will then attempt to affect – and in fact enhance – these social decision-making processes by modulating the identified brain network patterns with novel, targeted brain stimulation protocols and measuring the resulting effects on behavior and brain activity. Finally, I will examine whether the identified brain network mechanisms are indeed related to disturbed social decisions in two psychiatric illnesses characterized by maladaptive social behavior (post-traumatic stress disorder and autism spectrum disorder). My proposed work plan will generate a causal understanding of the brain network mechanisms that allow humans to control their social decisions, thereby elucidating a biological basis for individual differences in social behavior and paving the way for new perspectives on how disordered social behavior may be identified and hopefully remedied.
Max ERC Funding
1 999 991 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BUNGEE
Project Directed crop breeding using jumping genes
Researcher (PI) Etienne BUCHER
Host Institution (HI) EIDGENOESSISCHES DEPARTEMENT FUER WIRTSCHAFT, BILDUNG UND FORSCHUNG
Call Details Consolidator Grant (CoG), LS9, ERC-2016-COG
Summary The rapidly changing climate puts commonly used crop plants under strong pressure. It is therefore essential to develop novel breeding technologies to rapidly enhance crops to better withstand newly emerging stresses.
Interestingly, a clear link between transposable elements (TEs), crop improvement and varietal diversification exists. Furthermore, in recent years the importance of (TEs) in evolution and adaptation to stresses has been recognized. However the use of TEs in crop breeding is currently very limited because it is not possible to control TE mobility. My research group has identified a novel highly conserved epigenetic silencing mechanism that represses the activity of TEs in Arabidopsis. We also found drugs capable of inhibiting this mechanism. Because these drugs target highly conserved enzymes we were able to show that our drug treatment is also effective in rice. We are therefore able to produce TE bursts in a controlled manner in virtually any plant. We can thus, for the first time, generate and study TE bursts in crop plants in real time. More importantly, we found that the accumulation of novel insertions of a heat-stress inducible TE produced plants that, at a high frequency, were more resistant to heat stress. This suggests that the stress that was initially applied to activate a specific TE in the parent, lead to an improved tolerance to that specific stress in the progeny of that plant in a very straight-forward manner.
In this project I propose to accelerate plant breeding by testing and implementing a revolutionary TE-directed crop improvement technology. For that I plan to 1. Mobilize TEs in crop plants using selected stresses 2. Using these mobilized stress-responsive TEs breed novel crop plants resistant to those selected stresses and 3. Study the genetic and epigenetic impact of TE mobilization on host genomes. This project will have a broad impact on crop improvement and on the basic understanding of the evolutionary importance of TEs.
Summary
The rapidly changing climate puts commonly used crop plants under strong pressure. It is therefore essential to develop novel breeding technologies to rapidly enhance crops to better withstand newly emerging stresses.
Interestingly, a clear link between transposable elements (TEs), crop improvement and varietal diversification exists. Furthermore, in recent years the importance of (TEs) in evolution and adaptation to stresses has been recognized. However the use of TEs in crop breeding is currently very limited because it is not possible to control TE mobility. My research group has identified a novel highly conserved epigenetic silencing mechanism that represses the activity of TEs in Arabidopsis. We also found drugs capable of inhibiting this mechanism. Because these drugs target highly conserved enzymes we were able to show that our drug treatment is also effective in rice. We are therefore able to produce TE bursts in a controlled manner in virtually any plant. We can thus, for the first time, generate and study TE bursts in crop plants in real time. More importantly, we found that the accumulation of novel insertions of a heat-stress inducible TE produced plants that, at a high frequency, were more resistant to heat stress. This suggests that the stress that was initially applied to activate a specific TE in the parent, lead to an improved tolerance to that specific stress in the progeny of that plant in a very straight-forward manner.
In this project I propose to accelerate plant breeding by testing and implementing a revolutionary TE-directed crop improvement technology. For that I plan to 1. Mobilize TEs in crop plants using selected stresses 2. Using these mobilized stress-responsive TEs breed novel crop plants resistant to those selected stresses and 3. Study the genetic and epigenetic impact of TE mobilization on host genomes. This project will have a broad impact on crop improvement and on the basic understanding of the evolutionary importance of TEs.
Max ERC Funding
1 965 625 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym CAPSAHARA
Project CRITICAL APPROACHES TO POLITICS, SOCIAL ACTIVISM, AND ISLAMIC MILITANCY IN THE WESTERN SAHARAN REGION
Researcher (PI) Francisco Manuel Machado da Rosa da Silva Freire
Host Institution (HI) CENTRO EM REDE DE INVESTIGACAO EM ANTROPOLOGIA
Call Details Starting Grant (StG), SH5, ERC-2016-STG
Summary This project proposes an analysis of the reconfigurations established in the socio-political vocabulary of the western Saharan region – southern Morocco, Western Sahara and Mauritania – from the “post-empire” to the contemporary period. The project should produce an analysis of 1) the social and political structures shared in the region, 2) the local variations of those structures, based on case studies, 3) their specific configurations, based on social markers such as gender, age, and class, 4) the use of those structures in different historical periods. All these will be under theoretical and ethnographic scrutiny in order to achieve its main goal: 5) to understand the recent articulation of the social and political structures of the Western Saharan region, with broader and often exogenous political vocabularies.
The methodology used in this project is based on readings associated with different social sciences, with a particular focus on anthropology, history, and political science. The members of the research team, with experience and linguistic competence in the different geographies involved in this project, are expected to conduct original field enquiries, enabling a significant enhancement of the theoretical and ethnographic knowledge associated with this region.
The project’s main goal is to analyse the types of interplay established between pre-modern socio-political traditions and contemporary political expression and activism, in a particularly sensitive – and academically disregarded – region. Its effort to integrate a context that is usually compartmentalized, as well as to put together a group of researchers generally “isolated” in their particular areas of expertise, geographies, or nations, should also be valued. The project’s results should enable the different contexts under study to be integrated into the wider maps of current scientific research, providing, at the same time a dissemination of its outputs to an extended audience.
Summary
This project proposes an analysis of the reconfigurations established in the socio-political vocabulary of the western Saharan region – southern Morocco, Western Sahara and Mauritania – from the “post-empire” to the contemporary period. The project should produce an analysis of 1) the social and political structures shared in the region, 2) the local variations of those structures, based on case studies, 3) their specific configurations, based on social markers such as gender, age, and class, 4) the use of those structures in different historical periods. All these will be under theoretical and ethnographic scrutiny in order to achieve its main goal: 5) to understand the recent articulation of the social and political structures of the Western Saharan region, with broader and often exogenous political vocabularies.
The methodology used in this project is based on readings associated with different social sciences, with a particular focus on anthropology, history, and political science. The members of the research team, with experience and linguistic competence in the different geographies involved in this project, are expected to conduct original field enquiries, enabling a significant enhancement of the theoretical and ethnographic knowledge associated with this region.
The project’s main goal is to analyse the types of interplay established between pre-modern socio-political traditions and contemporary political expression and activism, in a particularly sensitive – and academically disregarded – region. Its effort to integrate a context that is usually compartmentalized, as well as to put together a group of researchers generally “isolated” in their particular areas of expertise, geographies, or nations, should also be valued. The project’s results should enable the different contexts under study to be integrated into the wider maps of current scientific research, providing, at the same time a dissemination of its outputs to an extended audience.
Max ERC Funding
1 192 144 €
Duration
Start date: 2017-04-01, End date: 2021-03-31
Project acronym Cellphmed
Project Accurate cell signatures for the advancement of personalized medicine
Researcher (PI) Didier Trono
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Patient/individual specific cells, including induced pluripotent stem (iPS) cells will be crucial in defining tomorrow’s medicine owing to their uses in drug discovery, immunotherapy or cell therapy. These clinical applications require the utmost accurate and reliable identity and purity testing, however, the majority of cells stored worldwide fall short of a sufficient level of characterisation. This project aims at validatating and commercializing an innovative method of diagnostic and quality control for human cells. It is based on our unprecedented ability to measure the expression of millions of uncharted RNA biomarkers called TEs, genetic units that contribute over 50% of the genome but that have been completely disregarded until very recently, mainly due to the challenge imposed by their complex analysis. Our new methodology provides a high-density barcode of cellular identity, opening the door for individual-specific cells to broad applications in biotechnology and medicine alike.
Summary
Patient/individual specific cells, including induced pluripotent stem (iPS) cells will be crucial in defining tomorrow’s medicine owing to their uses in drug discovery, immunotherapy or cell therapy. These clinical applications require the utmost accurate and reliable identity and purity testing, however, the majority of cells stored worldwide fall short of a sufficient level of characterisation. This project aims at validatating and commercializing an innovative method of diagnostic and quality control for human cells. It is based on our unprecedented ability to measure the expression of millions of uncharted RNA biomarkers called TEs, genetic units that contribute over 50% of the genome but that have been completely disregarded until very recently, mainly due to the challenge imposed by their complex analysis. Our new methodology provides a high-density barcode of cellular identity, opening the door for individual-specific cells to broad applications in biotechnology and medicine alike.
Max ERC Funding
149 875 €
Duration
Start date: 2017-07-01, End date: 2018-12-31