Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ADaPTIVE
Project Analysing Diversity with a Phenomic approach: Trends in Vertebrate Evolution
Researcher (PI) Anjali Goswami
Host Institution (HI) NATURAL HISTORY MUSEUM
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Summary
What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Max ERC Funding
1 482 818 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym AdaptoSCOPE
Project Using cis-regulatory mutations to highlight polygenic adaptation in natural plant systems
Researcher (PI) Juliette de Meaux
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Summary
The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Max ERC Funding
1 683 120 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ADULT
Project Analysis of the Dark Universe through Lensing Tomography
Researcher (PI) Hendrik Hoekstra
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Summary
The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Max ERC Funding
1 316 880 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym Beacon
Project Beacons in the Dark
Researcher (PI) Paulo César Carvalho Freire
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Summary
BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Max ERC Funding
1 892 376 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BEAMING
Project Detecting massive-planet/brown-dwarf/low-mass-stellar companions with the beaming effect
Researcher (PI) Moshe Zvi Mazeh
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary "I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Summary
"I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Max ERC Funding
1 737 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BeeDanceGap
Project Honeybee communication: animal social learning at the height of social complexity
Researcher (PI) Ellouise Leadbeater
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Summary
Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Max ERC Funding
1 422 010 €
Duration
Start date: 2016-02-01, End date: 2021-01-31