Project acronym EASY
Project Ejection Accretion Structures in YSOs (EASY)
Researcher (PI) Thomas RAY
Host Institution (HI) DUBLIN INSTITUTE FOR ADVANCED STUDIES
Call Details Advanced Grant (AdG), PE9, ERC-2016-ADG
Summary For a number of reasons, in particular their proximity and the abundant range of diagnostics to determine their characteristics, outflows from young stellar objects (YSOs) offer us the best opportunity of discovering how astrophysical jets are generated and the nature of the link between outflows and their accretion disks. Models predict that the jet is initially launched from within 0.1 to a few au of the star and focused on scales at most ten times larger. Thus, even for the nearest star formation region, we need high spatial resolution to image the “central engine” and test current models.
With these ideas in mind, and the availability of a whole new set of observational and computational resources, it is proposed to investigate the origin of YSO jets, and the jet/accretion zone link, using a number of highly novel approaches to test magneto-hydrodynamic (MHD) models including:
(a) Near-infrared interferometry to determine the spatial distribution and kinematics of the outflow as it is launched as a way of discriminating between competing models.
(b) A multi-epoch study of the strength and configuration of the magnetic field of the parent star to see whether model values and geometries agree with observations and the nature of its variability.
(c) Examining, through high spatial resolution radio observations, how the ionized component of these jets are collimated very close to the source and how shocks in the flow can give rise to low energy cosmic rays.
(d) Use the James Webb Space Telescope (JWST) and, in particular, the Mid-Infrared Instrument (MIRI) and Near-Infrared Spectrograph (NIRSpec) to investigate with high spatial resolution atomic jets from protostars that are still acquiring most of their mass. In addition, we will study how accretion is affected by metallicity by studying young solar-like stars in the low metallicity Magellanic Clouds.
In all cases the required observational campaigns have been approved.
Summary
For a number of reasons, in particular their proximity and the abundant range of diagnostics to determine their characteristics, outflows from young stellar objects (YSOs) offer us the best opportunity of discovering how astrophysical jets are generated and the nature of the link between outflows and their accretion disks. Models predict that the jet is initially launched from within 0.1 to a few au of the star and focused on scales at most ten times larger. Thus, even for the nearest star formation region, we need high spatial resolution to image the “central engine” and test current models.
With these ideas in mind, and the availability of a whole new set of observational and computational resources, it is proposed to investigate the origin of YSO jets, and the jet/accretion zone link, using a number of highly novel approaches to test magneto-hydrodynamic (MHD) models including:
(a) Near-infrared interferometry to determine the spatial distribution and kinematics of the outflow as it is launched as a way of discriminating between competing models.
(b) A multi-epoch study of the strength and configuration of the magnetic field of the parent star to see whether model values and geometries agree with observations and the nature of its variability.
(c) Examining, through high spatial resolution radio observations, how the ionized component of these jets are collimated very close to the source and how shocks in the flow can give rise to low energy cosmic rays.
(d) Use the James Webb Space Telescope (JWST) and, in particular, the Mid-Infrared Instrument (MIRI) and Near-Infrared Spectrograph (NIRSpec) to investigate with high spatial resolution atomic jets from protostars that are still acquiring most of their mass. In addition, we will study how accretion is affected by metallicity by studying young solar-like stars in the low metallicity Magellanic Clouds.
In all cases the required observational campaigns have been approved.
Max ERC Funding
1 853 090 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym iHEAR
Project Investigating the meanings and mechanisms of psychotic experiences in young people: a novel, mixed-methods approach
Researcher (PI) Mary CANNON
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Up to one fifth of young people have had the experience of psychotic symptoms, such as hearing voices when there is no-one around, or seeing visions. We now know that young people who experience these symptoms are at increased risk of developing psychotic disorders in adulthood. We also know that these young people are at higher risk of a range of co-morbid disorders such as depression and anxiety, and particularly suicidal behaviours. On the other hand, many of these young people will remain well and, for them, the psychotic experiences were merely a transitory phenomenon.
Childhood trauma is known to be associated with increased risk for psychotic symptoms and is a promising target for intervention. However we do not yet know enough about what types or timing of stressors are involved in the pathogenesis of psychotic symptoms, nor the mechanism by which early life stress may lead to changes in brain structure and function resulting in symptoms such as hallucinations. We also need to be able to identify those young people who will benefit most from intervention.
This ground-breaking, multi-disciplinary programme of work sets out to address these issues by drawing together epidemiology, social science, anthropology and neuroscience to devise a comprehensive programme of work examining the relationship between early life stress and psychotic symptoms among young people.
Designed as three inter-related work packages, this iHEAR programme will exploit a large population-based cohort and will capitalise on my existing unique cohort of young people, who were known to have experienced psychotic symptoms in childhood, as they enter young adulthood. This iHEAR programme will result in new information which will allow the development of innovative interventions to prevent or pre-empt severe mental illness in later life.
Summary
Up to one fifth of young people have had the experience of psychotic symptoms, such as hearing voices when there is no-one around, or seeing visions. We now know that young people who experience these symptoms are at increased risk of developing psychotic disorders in adulthood. We also know that these young people are at higher risk of a range of co-morbid disorders such as depression and anxiety, and particularly suicidal behaviours. On the other hand, many of these young people will remain well and, for them, the psychotic experiences were merely a transitory phenomenon.
Childhood trauma is known to be associated with increased risk for psychotic symptoms and is a promising target for intervention. However we do not yet know enough about what types or timing of stressors are involved in the pathogenesis of psychotic symptoms, nor the mechanism by which early life stress may lead to changes in brain structure and function resulting in symptoms such as hallucinations. We also need to be able to identify those young people who will benefit most from intervention.
This ground-breaking, multi-disciplinary programme of work sets out to address these issues by drawing together epidemiology, social science, anthropology and neuroscience to devise a comprehensive programme of work examining the relationship between early life stress and psychotic symptoms among young people.
Designed as three inter-related work packages, this iHEAR programme will exploit a large population-based cohort and will capitalise on my existing unique cohort of young people, who were known to have experienced psychotic symptoms in childhood, as they enter young adulthood. This iHEAR programme will result in new information which will allow the development of innovative interventions to prevent or pre-empt severe mental illness in later life.
Max ERC Funding
1 781 623 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym MEME
Project Memory Engram Maintenance and Expression
Researcher (PI) Tomas RYAN
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary The goal of this project is to understand how specific memory engrams are physically stored in the brain. Connectionist theories of memory storage have guided research into the neuroscience of memory for over a half century, but have received little direct proof due to experimental limitations. The major confound that has limited direct testing of such theories has been an inability to identify the cells and circuits that store specific memories. Memory engram technology, which allows the tagging and in vivo manipulation of specific engram cells, has recently allowed us to overcome this empirical limitation and has revolutionised the way memory can be studied in rodent models. Based on our research it is now known that sparse populations of hippocampal neurons that were active during a defined learning experience are both sufficient and necessary for retrieval of specific contextual memories. More recently we have established that hippocampal engram cells preferentially synapse directly onto postsynaptic engram cells. This “engram cell connectivity” could provide the neurobiological substrate for the storage of multimodal memories through a distributed engram circuit. However it is currently unknown whether engram cell connectivity itself is important for memory function. The proposed integrative neuroscience project will employ inter-disciplinary methods to directly probe the importance of engram cell connectivity for memory retrieval, storage, and encoding. The outcomes will directly inform a novel and comprehensive neurobiological model of memory engram storage.
Summary
The goal of this project is to understand how specific memory engrams are physically stored in the brain. Connectionist theories of memory storage have guided research into the neuroscience of memory for over a half century, but have received little direct proof due to experimental limitations. The major confound that has limited direct testing of such theories has been an inability to identify the cells and circuits that store specific memories. Memory engram technology, which allows the tagging and in vivo manipulation of specific engram cells, has recently allowed us to overcome this empirical limitation and has revolutionised the way memory can be studied in rodent models. Based on our research it is now known that sparse populations of hippocampal neurons that were active during a defined learning experience are both sufficient and necessary for retrieval of specific contextual memories. More recently we have established that hippocampal engram cells preferentially synapse directly onto postsynaptic engram cells. This “engram cell connectivity” could provide the neurobiological substrate for the storage of multimodal memories through a distributed engram circuit. However it is currently unknown whether engram cell connectivity itself is important for memory function. The proposed integrative neuroscience project will employ inter-disciplinary methods to directly probe the importance of engram cell connectivity for memory retrieval, storage, and encoding. The outcomes will directly inform a novel and comprehensive neurobiological model of memory engram storage.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym RLPHARMFMRI
Project Beyond dopamine: Characterizing the computational functions of midbrain modulatory neurotransmitter systems in human reinforcement learning using model-based pharmacological fMRI
Researcher (PI) John O'doherty
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary Understanding how humans and other animals are able to learn from experience and use this information to select future behavioural strategies to obtain the reinforcers necessary for survival, is a fundamental research question in biology. Considerable progress has been made in recent years on the neural computational underpinnings of this process following the observation that the phasic activity of dopamine neurons in the midbrain resembles a prediction error from a formal computational theory known as reinforcement learning (RL). While much is known about the functions of dopamine in RL, much less is known about the computational functions of other modulatory neurotransmitter systems in the midbrain such as the cholinergic, norcpinephrine, and serotonergic systems. The goal of this research proposal to the ERC, is to begin a systematic study of the computational functions of these other neurotransmitter systems (beyond dopamine) in RL. To do this we will combine functional magnetic resonance imaging in human subjects while they perform simple decision making tasks and undergo pharmacological manipulations to modulate systemic levels of these different neurotransmitter systems. We will combine computational model-based analyses with fMRI and behavioural data in order to explore the effects that these pharmacological modulations exert on different parameters and modules within RL. Specifically, we will test the contributions that the cholinergic system makes in setting the learning rate during RL and in mediating computations of expected uncertainty in the distribution of rewards available, we will test for the role of norepinephrine in balancing the rate of exploration and exploitation during decision making, as well as in encoding the level of unexpected uncertainty, and we will explore the possible role of serotonin in setting the rate of temporal discounting for reward, or in encoding prediction errors during aversive as opposed to reward-learning.
Summary
Understanding how humans and other animals are able to learn from experience and use this information to select future behavioural strategies to obtain the reinforcers necessary for survival, is a fundamental research question in biology. Considerable progress has been made in recent years on the neural computational underpinnings of this process following the observation that the phasic activity of dopamine neurons in the midbrain resembles a prediction error from a formal computational theory known as reinforcement learning (RL). While much is known about the functions of dopamine in RL, much less is known about the computational functions of other modulatory neurotransmitter systems in the midbrain such as the cholinergic, norcpinephrine, and serotonergic systems. The goal of this research proposal to the ERC, is to begin a systematic study of the computational functions of these other neurotransmitter systems (beyond dopamine) in RL. To do this we will combine functional magnetic resonance imaging in human subjects while they perform simple decision making tasks and undergo pharmacological manipulations to modulate systemic levels of these different neurotransmitter systems. We will combine computational model-based analyses with fMRI and behavioural data in order to explore the effects that these pharmacological modulations exert on different parameters and modules within RL. Specifically, we will test the contributions that the cholinergic system makes in setting the learning rate during RL and in mediating computations of expected uncertainty in the distribution of rewards available, we will test for the role of norepinephrine in balancing the rate of exploration and exploitation during decision making, as well as in encoding the level of unexpected uncertainty, and we will explore the possible role of serotonin in setting the rate of temporal discounting for reward, or in encoding prediction errors during aversive as opposed to reward-learning.
Max ERC Funding
1 841 404 €
Duration
Start date: 2010-01-01, End date: 2010-09-30
Project acronym SOFT-PHOTOCONVERSION
Project Solar Energy Conversion without Solid State Architectures: Pushing the Boundaries of Photoconversion Efficiencies at Self-healing Photosensitiser Functionalised Soft Interfaces
Researcher (PI) Micheal Diarmaid SCANLON
Host Institution (HI) UNIVERSITY OF LIMERICK
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Innovations in solar energy conversion are required to meet humanity’s growing energy demand, while reducing reliance on fossil fuels. All solar energy conversion devices harvest light and then separate photoproducts, minimising recombination. Normally charge separation takes place at the surface of nanostructured electrodes, often covered with photosensitiser molecules such as in dye-sensitised solar cells; DSSCs. However, the use solid state architectures made from inorganic materials leads to high processing costs, occasionally the use of toxic materials and an inability to generate a large and significant source of energy due to manufacturing limitations. An alternative is to effect charge separation at electrically polarised soft (immiscible water-oil) interfaces capable of driving charge transfer reactions and easily “dye-sensitised”. Photoproducts can be separated on either side of the soft interface based on their hydrophobicity or hydrophilicity, minimising recombination. SOFT-PHOTOCONVERSION will explore if photoconversion efficiencies at soft interfaces can be improved to become competitive with current photoelectrochemical systems, such as DSSCs. To achieve this goal innovative soft interface functionalisation strategies will be designed. To implement these strategies an integrated platform technology consisting of (photo)electrochemical, spectroscopic, microscopic and surface tension measurement techniques will be developed. This multi-disciplinary approach will allow precise monitoring of morphological changes in photoactive films that enhance activity in terms of optimal kinetics of photoinduced charge transfer. An unprecedented level of electrochemical control over photosensitiser assembly at soft interfaces will be attained, generating photoactive films with unique photophysical properties. Fundamental insights gained may potentially facilitate the emergence of new class of solar conversion devices non-reliant on solid state architectures.
Summary
Innovations in solar energy conversion are required to meet humanity’s growing energy demand, while reducing reliance on fossil fuels. All solar energy conversion devices harvest light and then separate photoproducts, minimising recombination. Normally charge separation takes place at the surface of nanostructured electrodes, often covered with photosensitiser molecules such as in dye-sensitised solar cells; DSSCs. However, the use solid state architectures made from inorganic materials leads to high processing costs, occasionally the use of toxic materials and an inability to generate a large and significant source of energy due to manufacturing limitations. An alternative is to effect charge separation at electrically polarised soft (immiscible water-oil) interfaces capable of driving charge transfer reactions and easily “dye-sensitised”. Photoproducts can be separated on either side of the soft interface based on their hydrophobicity or hydrophilicity, minimising recombination. SOFT-PHOTOCONVERSION will explore if photoconversion efficiencies at soft interfaces can be improved to become competitive with current photoelectrochemical systems, such as DSSCs. To achieve this goal innovative soft interface functionalisation strategies will be designed. To implement these strategies an integrated platform technology consisting of (photo)electrochemical, spectroscopic, microscopic and surface tension measurement techniques will be developed. This multi-disciplinary approach will allow precise monitoring of morphological changes in photoactive films that enhance activity in terms of optimal kinetics of photoinduced charge transfer. An unprecedented level of electrochemical control over photosensitiser assembly at soft interfaces will be attained, generating photoactive films with unique photophysical properties. Fundamental insights gained may potentially facilitate the emergence of new class of solar conversion devices non-reliant on solid state architectures.
Max ERC Funding
1 499 044 €
Duration
Start date: 2017-04-01, End date: 2022-03-31