Project acronym COHERENCE
Project Exploiting light coherence in photoacoustic imaging
Researcher (PI) Emmanuel Bossy
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Consolidator Grant (CoG), PE7, ERC-2015-CoG
Summary Photoacoustic imaging is an emerging multi-wave imaging modality that couples light excitation to acoustic detection, via the photoacoustic effect (sound generation via light absorption). Photoacoustic imaging provides images of optical absorption (as opposed to optical scattering). In addition, as photoacoustic imaging relies on detecting ultrasound waves that are very weakly scattered in biological tissue, it provides acoustic-resolution images of optical absorption non-invasively at large depths (up to several cm), where purely optical techniques have a poor resolution because of multiple scattering. As for conventional purely optical approaches, optical-resolution photoacoustic microscopy can also be performed non-invasively for shallow depth (< 1 mm), or invasively at depth by endoscopic approaches. However, photoacoustic imaging suffers several limitations. For imaging at greater depths, non-invasive photoacoustic imaging in the acoustic-resolution regime is limited by a depth-to-resolution ratio of about 100, because ultrasound attenuation increases with frequency. Optical-resolution photoacoustic endoscopy has very recently been introduced as a complementary approach, but is currently limited in terms of resolution (> 6 µm) and footprint (diameter > 2 mm).
The overall objective of COHERENCE is to break the above limitations and reach diffraction-limited optical-resolution photoacoustic imaging at depth in tissue in vivo. To do so, the core concept of COHERENCE is to use and manipulate coherent light in photoacoustic imaging. Specifically, COHERENCE will develop novel methods based on speckle illumination, wavefront shaping and super-resolution imaging. COHERENCE will result in two prototypes for tissue imaging, an optical-resolution photoacoustic endoscope for minimally-invasive any-depth tissue imaging, and a non-invasive photoacoustic microscope with enhanced depth-to-resolution ratio, up to optical resolution in the multiply-scattered light regime.
Summary
Photoacoustic imaging is an emerging multi-wave imaging modality that couples light excitation to acoustic detection, via the photoacoustic effect (sound generation via light absorption). Photoacoustic imaging provides images of optical absorption (as opposed to optical scattering). In addition, as photoacoustic imaging relies on detecting ultrasound waves that are very weakly scattered in biological tissue, it provides acoustic-resolution images of optical absorption non-invasively at large depths (up to several cm), where purely optical techniques have a poor resolution because of multiple scattering. As for conventional purely optical approaches, optical-resolution photoacoustic microscopy can also be performed non-invasively for shallow depth (< 1 mm), or invasively at depth by endoscopic approaches. However, photoacoustic imaging suffers several limitations. For imaging at greater depths, non-invasive photoacoustic imaging in the acoustic-resolution regime is limited by a depth-to-resolution ratio of about 100, because ultrasound attenuation increases with frequency. Optical-resolution photoacoustic endoscopy has very recently been introduced as a complementary approach, but is currently limited in terms of resolution (> 6 µm) and footprint (diameter > 2 mm).
The overall objective of COHERENCE is to break the above limitations and reach diffraction-limited optical-resolution photoacoustic imaging at depth in tissue in vivo. To do so, the core concept of COHERENCE is to use and manipulate coherent light in photoacoustic imaging. Specifically, COHERENCE will develop novel methods based on speckle illumination, wavefront shaping and super-resolution imaging. COHERENCE will result in two prototypes for tissue imaging, an optical-resolution photoacoustic endoscope for minimally-invasive any-depth tissue imaging, and a non-invasive photoacoustic microscope with enhanced depth-to-resolution ratio, up to optical resolution in the multiply-scattered light regime.
Max ERC Funding
2 116 290 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym COLDNANO
Project UltraCOLD ion and electron beams for NANOscience
Researcher (PI) Daniel Comparat
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Summary
COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Max ERC Funding
1 944 000 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ColDSIM
Project Cold gases with long-range interactions:
Non-equilibrium dynamics and complex simulations
Researcher (PI) Guido Pupillo
Host Institution (HI) CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Cold gases of electronically excited Rydberg atoms and groundstate polar molecules have generated considerable interest in cold matter physics, by introducing for the first time many-body systems with interactions which are both long-range and tunable with external fields. The overall objective of this proposal is (i) the development of theoretical ideas and tools for the understanding and control of non-equilibrium dynamics in these diverse systems and in their mixtures, including dissipative effects leading to cooling, and (ii) to analyse emerging fundamental phenomena in the classical and quantum regimes of strong interactions, leading to innovative simulations and experiments of complex classical and quantum systems. The project is divided into three parts, with strong overlap:
1) Rydberg atom dynamics: The study of complex open-system dynamics in gases of laser-driven Rydberg atoms, including the study of the effects and control of dissipation and decoherence from spontaneous emission in strongly interacting gases.
2) Cooling of complex molecules in atom-molecule mixtures: The theoretical investigation of novel ways to perform cooling towards quantum degeneracy of generic, comparatively complex molecules, beyond bialkali ones, in mixtures of groundstate molecules and of Rydberg-excited atoms.
3) Simulations of strongly interacting many-body systems at the quantum/classical crossover: Atomistic characterization of formation and dynamics of formation of strongly correlated phases with long-range interactions.
For each of these subjects, the objectives are at the cutting edge of fundamental atomic and molecular science and technology.
Summary
Cold gases of electronically excited Rydberg atoms and groundstate polar molecules have generated considerable interest in cold matter physics, by introducing for the first time many-body systems with interactions which are both long-range and tunable with external fields. The overall objective of this proposal is (i) the development of theoretical ideas and tools for the understanding and control of non-equilibrium dynamics in these diverse systems and in their mixtures, including dissipative effects leading to cooling, and (ii) to analyse emerging fundamental phenomena in the classical and quantum regimes of strong interactions, leading to innovative simulations and experiments of complex classical and quantum systems. The project is divided into three parts, with strong overlap:
1) Rydberg atom dynamics: The study of complex open-system dynamics in gases of laser-driven Rydberg atoms, including the study of the effects and control of dissipation and decoherence from spontaneous emission in strongly interacting gases.
2) Cooling of complex molecules in atom-molecule mixtures: The theoretical investigation of novel ways to perform cooling towards quantum degeneracy of generic, comparatively complex molecules, beyond bialkali ones, in mixtures of groundstate molecules and of Rydberg-excited atoms.
3) Simulations of strongly interacting many-body systems at the quantum/classical crossover: Atomistic characterization of formation and dynamics of formation of strongly correlated phases with long-range interactions.
For each of these subjects, the objectives are at the cutting edge of fundamental atomic and molecular science and technology.
Max ERC Funding
1 496 400 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CollectSwim
Project Individual and Collective Swimming of Active Microparticles
Researcher (PI) Sebastien MICHELIN
Host Institution (HI) ECOLE POLYTECHNIQUE
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Bacteria are tiny; yet their collective dynamics generate large-scale flows and profoundly modify a fluid’s viscosity or diffusivity. So do autophoretic microswimmers, an example of active microscopic particles that draw their motion from physico-chemical exchanges with their environment. How do such ``active fluids'' turn individual microscopic propulsion into macroscopic fluid dynamics? What controls this self-organization process? These are fundamental questions for biologists but also for engineers, to use these suspensions for mixing or chemical sensing and, more generally, for creating active fluids whose macroscopic physical properties can be controlled precisely.
Self-propulsion of autophoretic swimmers was reported only recently. Major scientific gaps impair the quantitative understanding of their individual and collective dynamics, which is required to exploit these active fluids. Existing models scarcely account for important experimental characteristics such as complex hydrodynamics, physico-chemical processes and confinement. Thus, these models cannot yet be used as predictive tools, even at the individual level.
Further, to use phoretic suspensions as active fluids with microscopically-controlled properties, quantitatively-predictive models are needed for the collective dynamics. Instead of ad-hoc interaction rules, collective models must be built on a detailed physico-mechanical description of each swimmer’s interaction with its environment.
This project will develop these tools and validate them against experimental data. This requires overcoming several major challenges: the diversity of electro-chemical processes, the confined geometry, the large number of particles, and the plurality of interaction mechanisms and their nonlinear coupling.
To address these issues, rigorous physical, mathematical and numerical models will be developed to obtain a complete multi-scale description of the individual and collective dynamics of active particles.
Summary
Bacteria are tiny; yet their collective dynamics generate large-scale flows and profoundly modify a fluid’s viscosity or diffusivity. So do autophoretic microswimmers, an example of active microscopic particles that draw their motion from physico-chemical exchanges with their environment. How do such ``active fluids'' turn individual microscopic propulsion into macroscopic fluid dynamics? What controls this self-organization process? These are fundamental questions for biologists but also for engineers, to use these suspensions for mixing or chemical sensing and, more generally, for creating active fluids whose macroscopic physical properties can be controlled precisely.
Self-propulsion of autophoretic swimmers was reported only recently. Major scientific gaps impair the quantitative understanding of their individual and collective dynamics, which is required to exploit these active fluids. Existing models scarcely account for important experimental characteristics such as complex hydrodynamics, physico-chemical processes and confinement. Thus, these models cannot yet be used as predictive tools, even at the individual level.
Further, to use phoretic suspensions as active fluids with microscopically-controlled properties, quantitatively-predictive models are needed for the collective dynamics. Instead of ad-hoc interaction rules, collective models must be built on a detailed physico-mechanical description of each swimmer’s interaction with its environment.
This project will develop these tools and validate them against experimental data. This requires overcoming several major challenges: the diversity of electro-chemical processes, the confined geometry, the large number of particles, and the plurality of interaction mechanisms and their nonlinear coupling.
To address these issues, rigorous physical, mathematical and numerical models will be developed to obtain a complete multi-scale description of the individual and collective dynamics of active particles.
Max ERC Funding
1 497 698 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym COLLEXISM
Project Collisional excitation of interstellar molecules: towards reactive systems
Researcher (PI) François LIQUE
Host Institution (HI) UNIVERSITE LE HAVRE NORMANDIE
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary Accurate determination of physical conditions of interstellar molecular clouds is a crucial step to better understand the life cycle of the interstellar matter and particularly the formation of stars and planets as well as the synthesis of organic molecules that may lead to emergence of life in the universe. A key parameter for the determination of these conditions from interstellar spectra is the calculation of accurate collisional rate coefficients of interstellar molecules with the most abundant species (H, He, H2 and e-). Whereas the knowledge of collisional processes has reached a certain level of maturity for collisions involving non-reactive molecules, very few reliable data exist for collisions involving reactive radicals and ions. The computation of such data is a real challenge since inelastic and reactive processes compete during collisions. In this project, we plan to overcome this complex problem and to provide collisional data for these radicals and ions in order to derive as much information as possible from the molecular spectra collected by current telescopes. As it is hardly possible to consider both collisional and reactive processes simultaneously, we will set up a new methodology based on quantum approach that allows obtaining accurate data. We will focus on molecular hydrides that are good candidates because of both their astrophysical importance and their quantum accessibility. We will carry out the determination of interaction potentials using quantum chemistry ab initio methods while the treatment of the dynamics of the nuclei will primarily be done using quantum time-independent reactive and non-reactive approaches. When exact quantum calculations will not be usable, innovative statistical quantum mechanical methods will also be explored. The new data will then be used in radiative transfer models and the predictions will be finally compared to observations in order to derive the abundances of reactive radicals with unprecedented accuracy.
Summary
Accurate determination of physical conditions of interstellar molecular clouds is a crucial step to better understand the life cycle of the interstellar matter and particularly the formation of stars and planets as well as the synthesis of organic molecules that may lead to emergence of life in the universe. A key parameter for the determination of these conditions from interstellar spectra is the calculation of accurate collisional rate coefficients of interstellar molecules with the most abundant species (H, He, H2 and e-). Whereas the knowledge of collisional processes has reached a certain level of maturity for collisions involving non-reactive molecules, very few reliable data exist for collisions involving reactive radicals and ions. The computation of such data is a real challenge since inelastic and reactive processes compete during collisions. In this project, we plan to overcome this complex problem and to provide collisional data for these radicals and ions in order to derive as much information as possible from the molecular spectra collected by current telescopes. As it is hardly possible to consider both collisional and reactive processes simultaneously, we will set up a new methodology based on quantum approach that allows obtaining accurate data. We will focus on molecular hydrides that are good candidates because of both their astrophysical importance and their quantum accessibility. We will carry out the determination of interaction potentials using quantum chemistry ab initio methods while the treatment of the dynamics of the nuclei will primarily be done using quantum time-independent reactive and non-reactive approaches. When exact quantum calculations will not be usable, innovative statistical quantum mechanical methods will also be explored. The new data will then be used in radiative transfer models and the predictions will be finally compared to observations in order to derive the abundances of reactive radicals with unprecedented accuracy.
Max ERC Funding
1 802 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym COMBINEPIC
Project Elliptic Combinatorics: Solving famous models from combinatorics, probability and statistical mechanics, via a transversal approach of special functions
Researcher (PI) Kilian RASCHEL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems. Although completely unrelated a priori, these models have the common feature of being presumed “exactly solvable” models, for which surprising and spectacular formulas should exist for quantities of interest. This is captured by the title “Elliptic Combinatorics”, the wording elliptic referring to the use of special functions, in a broad sense: algebraic/differentially finite (or holonomic)/diagonals/(hyper)elliptic/ hypergeometric/etc.
Besides the exciting nature of the models which we aim at solving, one main strength of our project lies in the variety of modern methods and fields that we cover: combinatorics, probability, algebra (representation theory), computer algebra, algebraic geometry, with a spectrum going from applied to pure mathematics.
We propose in addition two major applications, in finance (Markovian order books) and in population biology (evolution of multitype populations). We plan to work in close collaborations with researchers from these fields, to eventually apply our results (study of extinction probabilities for self-incompatible flower populations, for instance).
Summary
I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems. Although completely unrelated a priori, these models have the common feature of being presumed “exactly solvable” models, for which surprising and spectacular formulas should exist for quantities of interest. This is captured by the title “Elliptic Combinatorics”, the wording elliptic referring to the use of special functions, in a broad sense: algebraic/differentially finite (or holonomic)/diagonals/(hyper)elliptic/ hypergeometric/etc.
Besides the exciting nature of the models which we aim at solving, one main strength of our project lies in the variety of modern methods and fields that we cover: combinatorics, probability, algebra (representation theory), computer algebra, algebraic geometry, with a spectrum going from applied to pure mathematics.
We propose in addition two major applications, in finance (Markovian order books) and in population biology (evolution of multitype populations). We plan to work in close collaborations with researchers from these fields, to eventually apply our results (study of extinction probabilities for self-incompatible flower populations, for instance).
Max ERC Funding
1 242 400 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym COMBINISO
Project Quantitative picture of interactions between climate, hydrological cycle and stratospheric inputs in Antarctica over the last 100 years via the combined use of all water isotopes
Researcher (PI) Amaelle Israel
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Climate change and associated water cycle modifications have a strong impact on polar ice sheets through their influence on the global sea-level. The most promising tool for reconstructing temperature and water cycle evolution in Antarctica is to use water isotopic records in ice cores. Still, interpreting these records is nowadays limited by known biases linked to a too simple description of isotopic fractionations and cloud microphysics. Another key issue in this region is the stratosphere-troposphere flux influencing both the chemistry of ozone and decadal climate change. Data are lacking for constraining such flux even on the recent period (100 years). COMBINISO aims at making use of innovative methods combining measurements of the 5 major water isotopes (H217O, H218O, HTO, HDO, H2O) and global modelling to address the following key points: 1- Provide a strongly improved physical frame for interpretation of water isotopic records in polar regions; 2- Provide a quantitative picture of Antarctica temperature changes and links with the tropospheric water cycle prior to the instrumental period; 3- Quantify recent variability of the stratosphere water vapor input.
The proposed method, based on strong experimental – modelling interaction, includes innovative tools such as (1) the intensive use of the recently developed triple isotopic composition of oxygen in water for constraining water isotopic fractionation, hydrological cycle organisation and potentially stratospheric water input, (2) the development of a laser spectroscopy instrument to accurately measure this parameter in water vapour, (3) modelling development including stratospheric tracers (e.g. HTO and 10Be) in addition to water isotopes in Atmospheric General Circulation Models equipped with a detailed description of the stratosphere, (4) a first documentation of climate, hydrological cycle and stratospheric input in Antarctica through combined measurements of isotopes in ice cores for the last 100 years.
Summary
Climate change and associated water cycle modifications have a strong impact on polar ice sheets through their influence on the global sea-level. The most promising tool for reconstructing temperature and water cycle evolution in Antarctica is to use water isotopic records in ice cores. Still, interpreting these records is nowadays limited by known biases linked to a too simple description of isotopic fractionations and cloud microphysics. Another key issue in this region is the stratosphere-troposphere flux influencing both the chemistry of ozone and decadal climate change. Data are lacking for constraining such flux even on the recent period (100 years). COMBINISO aims at making use of innovative methods combining measurements of the 5 major water isotopes (H217O, H218O, HTO, HDO, H2O) and global modelling to address the following key points: 1- Provide a strongly improved physical frame for interpretation of water isotopic records in polar regions; 2- Provide a quantitative picture of Antarctica temperature changes and links with the tropospheric water cycle prior to the instrumental period; 3- Quantify recent variability of the stratosphere water vapor input.
The proposed method, based on strong experimental – modelling interaction, includes innovative tools such as (1) the intensive use of the recently developed triple isotopic composition of oxygen in water for constraining water isotopic fractionation, hydrological cycle organisation and potentially stratospheric water input, (2) the development of a laser spectroscopy instrument to accurately measure this parameter in water vapour, (3) modelling development including stratospheric tracers (e.g. HTO and 10Be) in addition to water isotopes in Atmospheric General Circulation Models equipped with a detailed description of the stratosphere, (4) a first documentation of climate, hydrological cycle and stratospheric input in Antarctica through combined measurements of isotopes in ice cores for the last 100 years.
Max ERC Funding
1 869 950 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CombiTop
Project New Interactions of Combinatorics through Topological Expansions, at the crossroads of Probability, Graph theory, and Mathematical Physics
Researcher (PI) Guillaume CHAPUY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary "The purpose of this project is to use the ubiquitous nature of certain combinatorial topological objects called maps in order to unveil deep connections between several areas of mathematics. Maps, that describe the embedding of a graph into a surface, appear in probability theory, mathematical physics, enumerative geometry or graph theory, and different combinatorial viewpoints on these objects have been developed in connection with each topic. The originality of our project will be to study these approaches together and to unify them.
The outcome will be triple, as we will:
1. build a new, well structured branch of combinatorics of which many existing results in different areas of enumerative and algebraic combinatorics are only first fruits;
2. connect and unify several aspects of the domains related to it, most importantly between probability and integrable hierarchies thus proposing new directions, new tools and new results for each of them;
3. export the tools of this unified framework to reach at new applications, especially in random graph theory and in a rising domain of algebraic combinatorics related to Tamari lattices.
The methodology to reach the unification will be the study of some strategic interactions at different places involving topological expansions, that is to say, places where enumerative problems dealing with maps appear and their genus invariant plays a natural role, in particular: 1. the combinatorial theory of maps developped by the "French school" of combinatorics, and the study of random maps; 2. the combinatorics of Fermions underlying the theory of KP and 2-Toda hierarchies; 3; the Eynard-Orantin "topological recursion" coming from mathematical physics.
We present some key set of tasks in view of relating these different topics together. The pertinence of the approach is demonstrated by recent research of the principal investigator."
Summary
"The purpose of this project is to use the ubiquitous nature of certain combinatorial topological objects called maps in order to unveil deep connections between several areas of mathematics. Maps, that describe the embedding of a graph into a surface, appear in probability theory, mathematical physics, enumerative geometry or graph theory, and different combinatorial viewpoints on these objects have been developed in connection with each topic. The originality of our project will be to study these approaches together and to unify them.
The outcome will be triple, as we will:
1. build a new, well structured branch of combinatorics of which many existing results in different areas of enumerative and algebraic combinatorics are only first fruits;
2. connect and unify several aspects of the domains related to it, most importantly between probability and integrable hierarchies thus proposing new directions, new tools and new results for each of them;
3. export the tools of this unified framework to reach at new applications, especially in random graph theory and in a rising domain of algebraic combinatorics related to Tamari lattices.
The methodology to reach the unification will be the study of some strategic interactions at different places involving topological expansions, that is to say, places where enumerative problems dealing with maps appear and their genus invariant plays a natural role, in particular: 1. the combinatorial theory of maps developped by the "French school" of combinatorics, and the study of random maps; 2. the combinatorics of Fermions underlying the theory of KP and 2-Toda hierarchies; 3; the Eynard-Orantin "topological recursion" coming from mathematical physics.
We present some key set of tasks in view of relating these different topics together. The pertinence of the approach is demonstrated by recent research of the principal investigator."
Max ERC Funding
1 086 125 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym COMEDIA
Project Complex Media Investigation with Adaptive Optics
Researcher (PI) Sylvain Hervé Gigan
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary "Wave propagation in complex (disordered) media stretches our knowledge to the limit in many different fields of physics. It has important applications in seismology, acoustics, radar, and condensed matter. It is a problem of large fundamental interest, notably for the study of Anderson localization.
In optics, it is of great importance in photonic devices, such as photonic crystals, plasmonic structures or random lasers. It is also at the heart of many biomedical-imaging issues: scattering ultimately limits the depth and resolution of all imaging techniques.
We have recently demonstrated that wavefront shaping –i.e. adaptive optics applied to complex media- is the tool of choice to match and address the huge complexity of this problem in optics. The COMEDIA project aims at developing a novel wavefront shaping toolbox, addressing both spatial and spectral degrees of freedom of light. Thanks to this toolbox, we plan to fulfill the following objectives:
1) A full spatiotemporal control of the optical field in a complex environment,
2) Breakthrough results in imaging and nano-optics,
3) Original answers to some of the most intriguing fundamental questions in mesoscopic physics."
Summary
"Wave propagation in complex (disordered) media stretches our knowledge to the limit in many different fields of physics. It has important applications in seismology, acoustics, radar, and condensed matter. It is a problem of large fundamental interest, notably for the study of Anderson localization.
In optics, it is of great importance in photonic devices, such as photonic crystals, plasmonic structures or random lasers. It is also at the heart of many biomedical-imaging issues: scattering ultimately limits the depth and resolution of all imaging techniques.
We have recently demonstrated that wavefront shaping –i.e. adaptive optics applied to complex media- is the tool of choice to match and address the huge complexity of this problem in optics. The COMEDIA project aims at developing a novel wavefront shaping toolbox, addressing both spatial and spectral degrees of freedom of light. Thanks to this toolbox, we plan to fulfill the following objectives:
1) A full spatiotemporal control of the optical field in a complex environment,
2) Breakthrough results in imaging and nano-optics,
3) Original answers to some of the most intriguing fundamental questions in mesoscopic physics."
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym COMMOTION
Project Communication between Functional Molecules using Photocontrolled Ions
Researcher (PI) Nathan Mcclenaghan
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The goal of COMMOTION is to establish a strategy whereby functional molecular devices (e.g. photo-/electroactive) can communicate with one another in solution and in organized, self-assembled media (biotic and abiotic). Despite intense research, no single strategy has been shown to satisfactorily connect artificial molecular components in networks. This is perhaps the greatest hurdle to overcome if implementation of artificial molecular devices and sophisticated molecule-based arrays are to become a reality. In this project, communication between distant sites / molecules will be based on the use of photoejected ions in solution and organized media (membranes, thin films, nanostructured hosts, micellar nanodomains). Ultimately this will lead to coded information transfer through ion movement, signalled by fluorescent reporter groups and induced by photomodulated receptor groups in small photoactive molecules. Integrated photonic and ionic processes operate efficiently in the biological world for the transfer of information and multiplexing distinct functional systems. Application in small artificial systems, combining “light-in, ion-out” (photoejection of an ion) and “ion-in, light-out” processes (ion-induced fluorescence), has great potential in a bottom-up approach to nanoscopic components and sensors and understanding and implementing logic operations in biological systems. Fast processes of photoejection and migration of ions will be studied in real-time (using time-resolved photophysical techniques) with high spatial resolution (using fluorescence confocal microscopy techniques) allowing evaluation of the versatility of this strategy in the treatment and transfer of information and incorporation into devices. Additionally, an understanding of the fundamental events implicated during the process of photoejection / decomplexion of coordinated ions and ion-exchange processes at membrane surfaces will be obtained.
Summary
The goal of COMMOTION is to establish a strategy whereby functional molecular devices (e.g. photo-/electroactive) can communicate with one another in solution and in organized, self-assembled media (biotic and abiotic). Despite intense research, no single strategy has been shown to satisfactorily connect artificial molecular components in networks. This is perhaps the greatest hurdle to overcome if implementation of artificial molecular devices and sophisticated molecule-based arrays are to become a reality. In this project, communication between distant sites / molecules will be based on the use of photoejected ions in solution and organized media (membranes, thin films, nanostructured hosts, micellar nanodomains). Ultimately this will lead to coded information transfer through ion movement, signalled by fluorescent reporter groups and induced by photomodulated receptor groups in small photoactive molecules. Integrated photonic and ionic processes operate efficiently in the biological world for the transfer of information and multiplexing distinct functional systems. Application in small artificial systems, combining “light-in, ion-out” (photoejection of an ion) and “ion-in, light-out” processes (ion-induced fluorescence), has great potential in a bottom-up approach to nanoscopic components and sensors and understanding and implementing logic operations in biological systems. Fast processes of photoejection and migration of ions will be studied in real-time (using time-resolved photophysical techniques) with high spatial resolution (using fluorescence confocal microscopy techniques) allowing evaluation of the versatility of this strategy in the treatment and transfer of information and incorporation into devices. Additionally, an understanding of the fundamental events implicated during the process of photoejection / decomplexion of coordinated ions and ion-exchange processes at membrane surfaces will be obtained.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31