Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomáš Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 1D-Engine
Project 1D-electrons coupled to dissipation: a novel approach for understanding and engineering superconducting materials and devices
Researcher (PI) Adrian KANTIAN
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Summary
Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Max ERC Funding
1 491 013 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 2D4QT
Project 2D Materials for Quantum Technology
Researcher (PI) Christoph STAMPFER
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Summary
Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Max ERC Funding
1 806 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-González
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3-TOP
Project Exploring the physics of 3-dimensional topological insulators
Researcher (PI) Laurens Wigbolt Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Summary
Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Max ERC Funding
2 419 590 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30