Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym AngioGenesHD
Project Epistasis analysis of angiogenes with high cellular definition
Researcher (PI) Rui Miguel Dos Santos Benedito
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Summary
Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Max ERC Funding
1 481 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym AP-1-FUN
Project AP-1 (Fos/Jun) Functions in Physiology and Disease
Researcher (PI) Erwin F. Wagner
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Summary
Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym BAR2LEGAB
Project Women travelling to seek abortion care in Europe: the impact of barriers to legal abortion on women living in countries with ostensibly liberal abortion laws
Researcher (PI) Silvia De Zordo
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Summary
In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Max ERC Funding
1 495 753 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valiña
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym CancerADAPT
Project Targeting the adaptive capacity of prostate cancer through the manipulation of transcriptional and metabolic traits
Researcher (PI) Arkaitz CARRACEDO PEREZ
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Summary
The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Max ERC Funding
1 999 882 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym CANCERMETAB
Project Metabolic requirements for prostate cancer cell fitness
Researcher (PI) Arkaitz Carracedo Perez
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary The actual view of cellular transformation and cancer progression supports the notion that cancer cells must undergo metabolic reprogramming in order to survive in a hostile environment. This field has experienced a renaissance in recent years, with the discovery of cancer genes regulating metabolic homeostasis, in turn being accepted as an emergent hallmark of cancer. Prostate cancer presents one of the highest incidences in men mostly in developed societies and exhibits a significant association with lifestyle environmental factors. Prostate cancer recurrence is thought to rely on a subpopulation of cancer cells with low-androgen requirements, high self-renewal potential and multidrug resistance, defined as cancer-initiating cells. However, whether this cancer cell fraction presents genuine metabolic properties that can be therapeutically relevant remains undefined. In CancerMetab, we aim to understand the potential benefit of monitoring and manipulating metabolism for prostate cancer prevention, detection and therapy. My group will carry out a multidisciplinary strategy, comprising cellular systems, genetic mouse models of prostate cancer, human epidemiological and clinical studies and bioinformatic analysis. The singularity of this proposal stems from the approach to the three key aspects that we propose to study. For prostate cancer prevention, we will use our faithful mouse model of prostate cancer to shed light on the contribution of obesity to prostate cancer. For prostate cancer detection, we will overcome the consistency issues of previously reported metabolic biomarkers by adding robustness to the human studies with mouse data integration. For prostate cancer therapy, we will focus on a cell population for which the metabolic requirements and the potential of targeting them for therapy have been overlooked to date, that is the prostate cancer-initiating cell compartment.
Summary
The actual view of cellular transformation and cancer progression supports the notion that cancer cells must undergo metabolic reprogramming in order to survive in a hostile environment. This field has experienced a renaissance in recent years, with the discovery of cancer genes regulating metabolic homeostasis, in turn being accepted as an emergent hallmark of cancer. Prostate cancer presents one of the highest incidences in men mostly in developed societies and exhibits a significant association with lifestyle environmental factors. Prostate cancer recurrence is thought to rely on a subpopulation of cancer cells with low-androgen requirements, high self-renewal potential and multidrug resistance, defined as cancer-initiating cells. However, whether this cancer cell fraction presents genuine metabolic properties that can be therapeutically relevant remains undefined. In CancerMetab, we aim to understand the potential benefit of monitoring and manipulating metabolism for prostate cancer prevention, detection and therapy. My group will carry out a multidisciplinary strategy, comprising cellular systems, genetic mouse models of prostate cancer, human epidemiological and clinical studies and bioinformatic analysis. The singularity of this proposal stems from the approach to the three key aspects that we propose to study. For prostate cancer prevention, we will use our faithful mouse model of prostate cancer to shed light on the contribution of obesity to prostate cancer. For prostate cancer detection, we will overcome the consistency issues of previously reported metabolic biomarkers by adding robustness to the human studies with mouse data integration. For prostate cancer therapy, we will focus on a cell population for which the metabolic requirements and the potential of targeting them for therapy have been overlooked to date, that is the prostate cancer-initiating cell compartment.
Max ERC Funding
1 498 686 €
Duration
Start date: 2013-11-01, End date: 2019-10-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31