Project acronym AST
Project Automatic System Testing
Researcher (PI) Leonardo MARIANI
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Verifying the correctness of software systems requires extensive and expensive testing sessions. While there are tools and methodologies to efficiently address unit and integration testing, system testing is still largely the result of manual effort.
Testing software applications at the system level requires executing the applications through their interfaces to verify the correctness of their functionalities and stimulate all their layers and components. Automating just part of this process can dramatically improve the effectiveness of verification activities and significantly reduce development costs, relevantly alleviating developers from their verification effort.
This project addresses the development of a pre-commercial tool that has the unique capability of efficiently and automatically generating semantically-relevant system test cases equipped with functional oracles. This capability derives from the AUGUSTO technique, which is an outcome of the Learn ERC project. The idea behind Augusto is to exploit the common-sense knowledge, that is, the background knowledge that every computer user has and that normally lets her/him use software applications without the need of accessing any documentation or manual. Once this knowledge is represented abstractly and then embedded in AUGUSTO, the technique can automatically adapt its definition to the software under test every time a program is tested.
This development work will be performed jointly with A company that produces and markets testing tools.
Summary
Verifying the correctness of software systems requires extensive and expensive testing sessions. While there are tools and methodologies to efficiently address unit and integration testing, system testing is still largely the result of manual effort.
Testing software applications at the system level requires executing the applications through their interfaces to verify the correctness of their functionalities and stimulate all their layers and components. Automating just part of this process can dramatically improve the effectiveness of verification activities and significantly reduce development costs, relevantly alleviating developers from their verification effort.
This project addresses the development of a pre-commercial tool that has the unique capability of efficiently and automatically generating semantically-relevant system test cases equipped with functional oracles. This capability derives from the AUGUSTO technique, which is an outcome of the Learn ERC project. The idea behind Augusto is to exploit the common-sense knowledge, that is, the background knowledge that every computer user has and that normally lets her/him use software applications without the need of accessing any documentation or manual. Once this knowledge is represented abstractly and then embedded in AUGUSTO, the technique can automatically adapt its definition to the software under test every time a program is tested.
This development work will be performed jointly with A company that produces and markets testing tools.
Max ERC Funding
150 000 €
Duration
Start date: 2019-01-01, End date: 2020-06-30
Project acronym ASTAOMEGA
Project IMPLEMENTATION OF A SUSTAINABLE AND COMPETITIVE SYSTEM TO SIMULTANEOUSLY PRODUCE ASTAXANTHIN AND OMEGA-3 FATTY ACIDS IN MICROALGAE FOR ACQUACULTURE AND HUMAN NUTRITION
Researcher (PI) Matteo BALLOTTARI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI VERONA
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary This project aims at developing an innovative and commercially competitive production platform for high value products as Astaxanthin and Omega-3, to be used for human nutrition or aquaculture.
Astaxanthin is a pigment primary produced by microalgae: this carotenoid has a strong antioxidant power and it is used in different fields as healthcare, food/feed supplementation and as pigmenting agent in aquaculture. However, cultivation of the main microalgae species producing Astaxanthin is costly due to low biomass productivity or low Astaxanthin content, causing an extremely high price of this molecule on the market.
Marine microalgae are also the primary producers of Omega-3, very long chain fatty acids, essential components of high quality diets for humans, being related to cardiovascular wellness, and proper visual and cognitive development. However, due to the high cost of microalgae cultivation, the market of Omega-3 is mostly based on fish or krill oils, with high costs and environment impacts associated.
New sources of Astaxanthin and Omega-3 must thus be implemented: based on the results obtained in ERC-Stg-SOLENALGAE, an innovative, low cost and high productive strategy can be proposed for simultaneous Astaxanthin and Omega-3 production in the robust and fast growing marine microalgae species Nannochloropsis gaditana.
The main objectives of the ASTAOMEGA project will be:
1. To validate to a demonstration stage the ASTAOMEGA system
2. The assessment of the market size and market requirements, through extensive market analysis
3. The identification of the best suitable commercial route to be undertaken to take the ASTAOMEGA system to the market, as inception of a spin-off company and/or the licensing agreements on the IPR exploitation with the interested end-users (see LOIs).
The ASTAOMEGA team is confident that the outcomes of this project are poised to exert a beneficial impact on the European microalgae industry and nutraceuticals market
Summary
This project aims at developing an innovative and commercially competitive production platform for high value products as Astaxanthin and Omega-3, to be used for human nutrition or aquaculture.
Astaxanthin is a pigment primary produced by microalgae: this carotenoid has a strong antioxidant power and it is used in different fields as healthcare, food/feed supplementation and as pigmenting agent in aquaculture. However, cultivation of the main microalgae species producing Astaxanthin is costly due to low biomass productivity or low Astaxanthin content, causing an extremely high price of this molecule on the market.
Marine microalgae are also the primary producers of Omega-3, very long chain fatty acids, essential components of high quality diets for humans, being related to cardiovascular wellness, and proper visual and cognitive development. However, due to the high cost of microalgae cultivation, the market of Omega-3 is mostly based on fish or krill oils, with high costs and environment impacts associated.
New sources of Astaxanthin and Omega-3 must thus be implemented: based on the results obtained in ERC-Stg-SOLENALGAE, an innovative, low cost and high productive strategy can be proposed for simultaneous Astaxanthin and Omega-3 production in the robust and fast growing marine microalgae species Nannochloropsis gaditana.
The main objectives of the ASTAOMEGA project will be:
1. To validate to a demonstration stage the ASTAOMEGA system
2. The assessment of the market size and market requirements, through extensive market analysis
3. The identification of the best suitable commercial route to be undertaken to take the ASTAOMEGA system to the market, as inception of a spin-off company and/or the licensing agreements on the IPR exploitation with the interested end-users (see LOIs).
The ASTAOMEGA team is confident that the outcomes of this project are poised to exert a beneficial impact on the European microalgae industry and nutraceuticals market
Max ERC Funding
149 955 €
Duration
Start date: 2018-09-01, End date: 2020-02-29
Project acronym BBBhybrid
Project Advanced in vitro physiological models: Towards real-scale, biomimetic and biohybrid barriers-on-a-chip
Researcher (PI) Gianni CIOFANI
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary This project is focused on the design, the production, the characterization, and the proposal for future commercialization of the first 1:1 scale 3D-printed realistic model of the brain tumor microenvironment with its associated blood neurovasculature. The proposed biomimetic dynamic 3D system, characterized by microcapillary diameter size and fluid flows similar to the in vivo physiological parameters, represents a drastic innovation with respect to other models well-established in the literature and available on the market, since it will allow to reliably reproduce the physiological environment and to accurately estimate the amount of drugs and/or of nanomaterial-associated compounds delivered through a modular length of the system. At the same time, in vitro 3D models are envisioned, allowing more physiologically-relevant information and predictive data to be obtained. All the artificial components will be fabricated through advanced lithography techniques based on two-photon polymerization (2pp), a disrupting mesoscale manufacturing approach which allows the fast fabrication of low-cost structures with nanometer resolution and great levels of reproducibility/accuracy. The proposed platform can be easily adopted in cell biology laboratories as multi-compartmental scaffold for the development of advanced co-culture systems, the primary biomedical applications of which consist in high-throughput screening of brain drugs and in testing of the efficacy of different anticancer therapies in vitro.
Summary
This project is focused on the design, the production, the characterization, and the proposal for future commercialization of the first 1:1 scale 3D-printed realistic model of the brain tumor microenvironment with its associated blood neurovasculature. The proposed biomimetic dynamic 3D system, characterized by microcapillary diameter size and fluid flows similar to the in vivo physiological parameters, represents a drastic innovation with respect to other models well-established in the literature and available on the market, since it will allow to reliably reproduce the physiological environment and to accurately estimate the amount of drugs and/or of nanomaterial-associated compounds delivered through a modular length of the system. At the same time, in vitro 3D models are envisioned, allowing more physiologically-relevant information and predictive data to be obtained. All the artificial components will be fabricated through advanced lithography techniques based on two-photon polymerization (2pp), a disrupting mesoscale manufacturing approach which allows the fast fabrication of low-cost structures with nanometer resolution and great levels of reproducibility/accuracy. The proposed platform can be easily adopted in cell biology laboratories as multi-compartmental scaffold for the development of advanced co-culture systems, the primary biomedical applications of which consist in high-throughput screening of brain drugs and in testing of the efficacy of different anticancer therapies in vitro.
Max ERC Funding
150 000 €
Duration
Start date: 2019-04-01, End date: 2020-09-30
Project acronym BI-SDMoF
Project Bit-interleaved sigma-delta modulation over fiber
Researcher (PI) Piet DEMEESTER
Host Institution (HI) UNIVERSITEIT GENT
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Network operators are struggling on how to release broadband mobile services in highly dense and hot-spot scenarios. The 5th generation of mobile networks is targeting per user downlink and uplink rates of 300 Mb/s and 50 Mb/s respectively. In ultra-dense environments such as stadiums, airports, shopping malls and tourist hot-spots, the aggregated bit rate becomes enormous. To make it more concrete, Belgium’s national football stadium (King Baudouin) is taken as example. The stadium can accommodate 50000 spectators. Even if an average bit-rate of only 50 Mb/s needs to be provided, an aggregated bit-rate of 2.5 Tb/s is required. Given the small area of a stadium (18 000 m2 seating area), this results in an astonishing capacity per area of 140 Tb/s/km2 or 140 Mb/s/m2. This is a 10-fold increase compared to area traffic capacity targeted in 5G and a 100-fold increase compared to the current 4G technologies.
In order to make this 10-fold increase happen, the BI-SDMoF proposal (Bit-Interleaved Sigma-Delta Modulation over Fiber) builds on patent pending technologies currently developed in the ATTO Advanced ERC grant (“A new concept for ultra-high capacity wireless networks”). Whereas the ATTO project is using floor and robot integrated antenna’s with a target density of 100 Gb/s/m2 and targets a long term market potential, the BI-SDMoF PoC will focus on applying basic components from the ATTO project in a 5G fiber-fronthaul Centralized Radio Access Network (C-RAN) and Distributed Antenna System (DAS) context that is much closer to the market. The target density is 150 Mb/s/m2 and a distributed Massive MIMO scenario is envisaged. As a PoC demonstrator a low power, low cost 28 GHz RRH (Radio Resource Head) supporting two antenna streams with four 400 MBd channels each will be designed and integrated in a small scale DAS (4 RRHs) demonstrator. Each RRH will support 25.6 Gbps mobile traffic and the complete DAS system will be tested in a stadium environment (Ghelamco).
Summary
Network operators are struggling on how to release broadband mobile services in highly dense and hot-spot scenarios. The 5th generation of mobile networks is targeting per user downlink and uplink rates of 300 Mb/s and 50 Mb/s respectively. In ultra-dense environments such as stadiums, airports, shopping malls and tourist hot-spots, the aggregated bit rate becomes enormous. To make it more concrete, Belgium’s national football stadium (King Baudouin) is taken as example. The stadium can accommodate 50000 spectators. Even if an average bit-rate of only 50 Mb/s needs to be provided, an aggregated bit-rate of 2.5 Tb/s is required. Given the small area of a stadium (18 000 m2 seating area), this results in an astonishing capacity per area of 140 Tb/s/km2 or 140 Mb/s/m2. This is a 10-fold increase compared to area traffic capacity targeted in 5G and a 100-fold increase compared to the current 4G technologies.
In order to make this 10-fold increase happen, the BI-SDMoF proposal (Bit-Interleaved Sigma-Delta Modulation over Fiber) builds on patent pending technologies currently developed in the ATTO Advanced ERC grant (“A new concept for ultra-high capacity wireless networks”). Whereas the ATTO project is using floor and robot integrated antenna’s with a target density of 100 Gb/s/m2 and targets a long term market potential, the BI-SDMoF PoC will focus on applying basic components from the ATTO project in a 5G fiber-fronthaul Centralized Radio Access Network (C-RAN) and Distributed Antenna System (DAS) context that is much closer to the market. The target density is 150 Mb/s/m2 and a distributed Massive MIMO scenario is envisaged. As a PoC demonstrator a low power, low cost 28 GHz RRH (Radio Resource Head) supporting two antenna streams with four 400 MBd channels each will be designed and integrated in a small scale DAS (4 RRHs) demonstrator. Each RRH will support 25.6 Gbps mobile traffic and the complete DAS system will be tested in a stadium environment (Ghelamco).
Max ERC Funding
149 970 €
Duration
Start date: 2019-09-01, End date: 2021-02-28
Project acronym BrainCircuit-on-chip
Project Microfluidic chambers for establishing physiological and pathological human iPSC-derived neuronal circuits
Researcher (PI) Vania BROCCOLI
Host Institution (HI) OSPEDALE SAN RAFFAELE SRL
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary In vitro cultures of brain cells generate an ease and accessible ensemble of neurons In vitro cultures of brain cells generate an ease and accessible ensemble of neurons which has been invaluable for innumerable cellular and molecular studies. However, brain tissue dissociation and neuronal plating in vitro causes a complete loss of the original connections present into the brain tissue. Therefore, in vitro neuronal cultures do not allow to model specific neuronal circuits and study their specific properties. The same limitation is valid for human stem cell-derived neuronal cell cultures. In fact, several neuronal cell types can be differentiated from human iPS cells (iPSCs), but without any organization in terms of connectivity or synaptic specificity. We have established a microfluidic platform, named BrainCircuit-on-chip, which allows to growth human iPSC-derived neurons with a stereotyped organization and to establish patterned connections between different neuronal cell types. These microchips contain a central chamber where synapses between the two neuronal cell types are generated establishing the correct functional integration between the two neuronal populations. PDMS-microfluidic chambers are transparent and enables high-power and time-lapse imaging in the different neuronal compartments for sub-cellular and molecular studies. Moreover, the design of the central chamber enables to expose the synapses to chemicals or other cells types like astrocytes or microglia to study their effects on a specific class of synapses. We will produce a convenient kit with the frozen human neurons, the microfluidic chamber and a detailed protocol for generating the patterned neuronal circuits for research studies, compound testing and toxicology research.
Summary
In vitro cultures of brain cells generate an ease and accessible ensemble of neurons In vitro cultures of brain cells generate an ease and accessible ensemble of neurons which has been invaluable for innumerable cellular and molecular studies. However, brain tissue dissociation and neuronal plating in vitro causes a complete loss of the original connections present into the brain tissue. Therefore, in vitro neuronal cultures do not allow to model specific neuronal circuits and study their specific properties. The same limitation is valid for human stem cell-derived neuronal cell cultures. In fact, several neuronal cell types can be differentiated from human iPS cells (iPSCs), but without any organization in terms of connectivity or synaptic specificity. We have established a microfluidic platform, named BrainCircuit-on-chip, which allows to growth human iPSC-derived neurons with a stereotyped organization and to establish patterned connections between different neuronal cell types. These microchips contain a central chamber where synapses between the two neuronal cell types are generated establishing the correct functional integration between the two neuronal populations. PDMS-microfluidic chambers are transparent and enables high-power and time-lapse imaging in the different neuronal compartments for sub-cellular and molecular studies. Moreover, the design of the central chamber enables to expose the synapses to chemicals or other cells types like astrocytes or microglia to study their effects on a specific class of synapses. We will produce a convenient kit with the frozen human neurons, the microfluidic chamber and a detailed protocol for generating the patterned neuronal circuits for research studies, compound testing and toxicology research.
Max ERC Funding
150 000 €
Duration
Start date: 2019-08-01, End date: 2021-01-31
Project acronym CAPSEL
Project Cellulose Aluminium Polymer multi-ions composite Solid-electrolyte
Researcher (PI) Isabel Maria MERCES FERREIRA
Host Institution (HI) NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary A low cost and efficient cellulose aluminium polymer multi-ions solid electrolyte (CAPSEL), with ionic conductivity in the range of 1-3 mS/cm, has been produced by a simple process which enables thin and large area battery production. An electrolyte with inherent potential towards Al based batteries and posterior commercialisation. CAPSEL may represent a good alternative to Li based batteries as Al is an abundant, cheaper and less reactive metal compared to Li. The formulation of CAPSEL can be easily adapted to other ions, such as Na and Li. Furthermore, a solid electrolyte can solve many of the safety risks existing in commercially available batteries, in addition to allowing a significant reduction in their size and weight. We expect this project to give an important contribution towards a new class of highly efficiency batteries whose disposal route offers no environmental impacts. This is only possible because of its biodegradable polymeric binder and cellulose as major constituents of the electrolyte. Therefore, CAPSEL can follow conventional recycling routes of paper after the batteries' end-life cycle. CAPSEL also enables the power supply of low-cost and large area disposable applications like e-paper, smart labels and smart packing. The Proof-of-Concept is a unique opportunity to focus on further exploitation of the developed solid electrolyte whilst at the same time concentrating efforts towards the compilation of a suitable product data sheet verified by an independent laboratory - a crucial step prior to engaging with potential investors/partners for either production or commercialisation.
Summary
A low cost and efficient cellulose aluminium polymer multi-ions solid electrolyte (CAPSEL), with ionic conductivity in the range of 1-3 mS/cm, has been produced by a simple process which enables thin and large area battery production. An electrolyte with inherent potential towards Al based batteries and posterior commercialisation. CAPSEL may represent a good alternative to Li based batteries as Al is an abundant, cheaper and less reactive metal compared to Li. The formulation of CAPSEL can be easily adapted to other ions, such as Na and Li. Furthermore, a solid electrolyte can solve many of the safety risks existing in commercially available batteries, in addition to allowing a significant reduction in their size and weight. We expect this project to give an important contribution towards a new class of highly efficiency batteries whose disposal route offers no environmental impacts. This is only possible because of its biodegradable polymeric binder and cellulose as major constituents of the electrolyte. Therefore, CAPSEL can follow conventional recycling routes of paper after the batteries' end-life cycle. CAPSEL also enables the power supply of low-cost and large area disposable applications like e-paper, smart labels and smart packing. The Proof-of-Concept is a unique opportunity to focus on further exploitation of the developed solid electrolyte whilst at the same time concentrating efforts towards the compilation of a suitable product data sheet verified by an independent laboratory - a crucial step prior to engaging with potential investors/partners for either production or commercialisation.
Max ERC Funding
150 000 €
Duration
Start date: 2019-01-01, End date: 2020-06-30
Project acronym CIRCUS
Project Crosspoint In-memoRy CompUting Systems
Researcher (PI) Daniele IELMINI
Host Institution (HI) POLITECNICO DI MILANO
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Every second, our smart phones deliver a wealth of information that can be used to monitor the traffic, the financial transactions, and even the spread of a dangerous disease. The processing of these big data into a meaningful information requires specific machine learning (ML) algorithms, which essentially consist of regression techniques for inference, classification and prediction. The conventional digital computers are not designed to optimally solve these problems with efficient time and energy consumption, which is one of the reasons why the power consumption by data centers worldwide is expected to triple in the next decade. Such a poor energy efficiency is essentially due to the physical separation between the central processing unit (CPU), where data are computed, and the memory, where data are stored, according to classical von Neumann computer architecture. In the frame of our ERC-CoG RESCUE, my group has developed a new paradigm to efficiently execute ML tasks in just one step within the memory. Instead of moving data from the memory to the digital CPU, an analogue computation is directly operated within the data, thus breaking all previous limits of time and energy consumption (10.000x reduction in the number of operations, hence time, and 1.000x in energy). Our in-memory technology is modular and universal, thus can be implemented in any existing memory and computing technology to accelerate ML tasks in future smartphones and data centers. In the ERC-PoC CIRCUS, we aim at bringing this technology to a higher maturity level, demonstrating its scalability and technical feasibility by simulations and realization of a small-scale prototype. In the meantime, we will also perform a comprehensive market search to recognize opportunities and draft an investor-ready business plan for raising future investments to further advance the solution toward industrial exploitation.
Summary
Every second, our smart phones deliver a wealth of information that can be used to monitor the traffic, the financial transactions, and even the spread of a dangerous disease. The processing of these big data into a meaningful information requires specific machine learning (ML) algorithms, which essentially consist of regression techniques for inference, classification and prediction. The conventional digital computers are not designed to optimally solve these problems with efficient time and energy consumption, which is one of the reasons why the power consumption by data centers worldwide is expected to triple in the next decade. Such a poor energy efficiency is essentially due to the physical separation between the central processing unit (CPU), where data are computed, and the memory, where data are stored, according to classical von Neumann computer architecture. In the frame of our ERC-CoG RESCUE, my group has developed a new paradigm to efficiently execute ML tasks in just one step within the memory. Instead of moving data from the memory to the digital CPU, an analogue computation is directly operated within the data, thus breaking all previous limits of time and energy consumption (10.000x reduction in the number of operations, hence time, and 1.000x in energy). Our in-memory technology is modular and universal, thus can be implemented in any existing memory and computing technology to accelerate ML tasks in future smartphones and data centers. In the ERC-PoC CIRCUS, we aim at bringing this technology to a higher maturity level, demonstrating its scalability and technical feasibility by simulations and realization of a small-scale prototype. In the meantime, we will also perform a comprehensive market search to recognize opportunities and draft an investor-ready business plan for raising future investments to further advance the solution toward industrial exploitation.
Max ERC Funding
149 464 €
Duration
Start date: 2019-05-01, End date: 2020-10-31
Project acronym EASY-IPS
Project a rapid and efficient method for generation of iPSC
Researcher (PI) Nicola Brunetti-Pierri
Host Institution (HI) FONDAZIONE TELETHON
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary The discovery of induced pluripotent stem cells (iPSC) has provided a major advance in biomedical research as they are able to offer meaningful models to investigate human diseases and biology. A growing number of research laboratory are using iPSC for studying a wide variety of human diseases. iPSC have also tremendous potential for regenerative medicine because they can be virtually differentiated in any type of cell. Through the support of the ERC grant IEMTx, we built-up an in-house protocol for generation of iPSC from patients’ cell lines that is efficient and has an extremely low cost compared to other available methods with the highest clinical safety. Therefore, we can offer a superior system to produce iPSC based on a simpler, more efficient, highly reproducible, cost effective and customizable process. Moreover, HDAd have potential also for cell trans-differentiation that is the reprogramming of one somatic cell type into another cell type without passing through the pluripotent state. In summary, the goal of this proposal is to pave the way towards commercialization of our novel products for generating iPSC and trans-differentiated cell lines based on HDAd vectors as non-integrating, high-cloning capacity, inexpensive and easy to use vectors. We believe this method will become a relevant opportunity for biomedical research and might find applications in regenerative medicine as well.
Summary
The discovery of induced pluripotent stem cells (iPSC) has provided a major advance in biomedical research as they are able to offer meaningful models to investigate human diseases and biology. A growing number of research laboratory are using iPSC for studying a wide variety of human diseases. iPSC have also tremendous potential for regenerative medicine because they can be virtually differentiated in any type of cell. Through the support of the ERC grant IEMTx, we built-up an in-house protocol for generation of iPSC from patients’ cell lines that is efficient and has an extremely low cost compared to other available methods with the highest clinical safety. Therefore, we can offer a superior system to produce iPSC based on a simpler, more efficient, highly reproducible, cost effective and customizable process. Moreover, HDAd have potential also for cell trans-differentiation that is the reprogramming of one somatic cell type into another cell type without passing through the pluripotent state. In summary, the goal of this proposal is to pave the way towards commercialization of our novel products for generating iPSC and trans-differentiated cell lines based on HDAd vectors as non-integrating, high-cloning capacity, inexpensive and easy to use vectors. We believe this method will become a relevant opportunity for biomedical research and might find applications in regenerative medicine as well.
Max ERC Funding
150 000 €
Duration
Start date: 2019-01-01, End date: 2020-06-30
Project acronym FESTA
Project Flexible Euv SpecTrometer for Attosecond science
Researcher (PI) Caterina VOZZI
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Attosecond science studies the motion of electrons on atomic and molecular scale, which typically occurs on the timescale of attoseconds (1 as = 10^-18 s). This motion is at the basis of all fundamental processes occurring in Chemistry, Material Science and Biology, and its understanding enables innovation in all these scientific fields. The access to electronic motion on the timescale of attoseconds is based on the analysis of extreme ultra-violet (EUV) harmonic radiation generated when a molecule is hit by an intense femtosecond (1 fs = 10^-15 s) laser pulse. However, despite its huge potential, the full exploitation of this approach is currently hindered by limitations in the commercially available EUV spectrometers and it is restricted to a few very specialized users who are able to build their own instruments.
By exploiting the innovative technical methods developed during UDynI ERC, we want to realize a compact, versatile, and user-friendly EUV spectrometer, which overcomes these limitations. In this way, we will grant access to attosecond science to a wider range of stakeholders in fields with high impact on the society, such as Health (e.g. drug discovery), Environment (e.g. understanding atmospheric photoinduced pollution, finding more effective chemical and catalytic processes) and Technology (e.g. study of high temperature superconductors and ultrafast switching in magnetic materials).
The objective of the FESTA PoC Project is the development of a EUV detection system prototype (TRL6), the identification of a proper IPR exploitation strategy and the definition of the most suitable business model for the commercialization of the FESTA platform.
Summary
Attosecond science studies the motion of electrons on atomic and molecular scale, which typically occurs on the timescale of attoseconds (1 as = 10^-18 s). This motion is at the basis of all fundamental processes occurring in Chemistry, Material Science and Biology, and its understanding enables innovation in all these scientific fields. The access to electronic motion on the timescale of attoseconds is based on the analysis of extreme ultra-violet (EUV) harmonic radiation generated when a molecule is hit by an intense femtosecond (1 fs = 10^-15 s) laser pulse. However, despite its huge potential, the full exploitation of this approach is currently hindered by limitations in the commercially available EUV spectrometers and it is restricted to a few very specialized users who are able to build their own instruments.
By exploiting the innovative technical methods developed during UDynI ERC, we want to realize a compact, versatile, and user-friendly EUV spectrometer, which overcomes these limitations. In this way, we will grant access to attosecond science to a wider range of stakeholders in fields with high impact on the society, such as Health (e.g. drug discovery), Environment (e.g. understanding atmospheric photoinduced pollution, finding more effective chemical and catalytic processes) and Technology (e.g. study of high temperature superconductors and ultrafast switching in magnetic materials).
The objective of the FESTA PoC Project is the development of a EUV detection system prototype (TRL6), the identification of a proper IPR exploitation strategy and the definition of the most suitable business model for the commercialization of the FESTA platform.
Max ERC Funding
150 000 €
Duration
Start date: 2018-10-01, End date: 2020-03-31
Project acronym FLUO
Project Industrial implementation of a step-change technology to measure fluorescence
Researcher (PI) Dario POLLI
Host Institution (HI) POLITECNICO DI MILANO
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary The FLUO proposal aims at bringing to the market a revolutionary device to measure fluorescence of a large variety of samples. Fluorescence is the property of molecules to emit radiation after being illuminated by an excitation light (usually in the ultraviolet). Fluorescence is a powerful analytical tool employed in many fields such as life science, biology, biotechnology, pharmacology, medical diagnostics, food industry, chemistry, photovoltaics and environment safety. Different chemical species can be uniquely identified with high sensitivity and specificity, in a non-destructive and non-invasive way.
Spectrometers for measuring fluorescence already exist in the market, but they present drawbacks such as large footprint, high costs, long acquisition times and low sensitivity. Our ground-breaking patented technology, based on an ultrastable interferometer, overcomes all these issues, thus paving the way to many scientific and industrial applications. We have already initiated the customer identification and discovery process and we have received many positive feedbacks from potential customers.
The FLUO project has two main goals:
1) We aim at pushing the Technology Readiness Level of the products to the ultimate maturity required to approach the market, corresponding to TRL9. A first working prototype has already been realized and tested; we will realize two second-generation prototypes that will be technically validated in the scientific and industrial sectors.
2) We will unleash the innovation potential of the approach, developing an exhaustive exploitation plan, based on a detailed market analysis and a profitable financial plan. We will benchmark our instrument against the competitors’ ones and sign commercial agreements with strategic partners. In the framework of the lean start-up approach, we will draft a first version of a Business Model Canvas and Business Plan in the view of the foundation of a start-up company towards the end of the FLUO project.
Summary
The FLUO proposal aims at bringing to the market a revolutionary device to measure fluorescence of a large variety of samples. Fluorescence is the property of molecules to emit radiation after being illuminated by an excitation light (usually in the ultraviolet). Fluorescence is a powerful analytical tool employed in many fields such as life science, biology, biotechnology, pharmacology, medical diagnostics, food industry, chemistry, photovoltaics and environment safety. Different chemical species can be uniquely identified with high sensitivity and specificity, in a non-destructive and non-invasive way.
Spectrometers for measuring fluorescence already exist in the market, but they present drawbacks such as large footprint, high costs, long acquisition times and low sensitivity. Our ground-breaking patented technology, based on an ultrastable interferometer, overcomes all these issues, thus paving the way to many scientific and industrial applications. We have already initiated the customer identification and discovery process and we have received many positive feedbacks from potential customers.
The FLUO project has two main goals:
1) We aim at pushing the Technology Readiness Level of the products to the ultimate maturity required to approach the market, corresponding to TRL9. A first working prototype has already been realized and tested; we will realize two second-generation prototypes that will be technically validated in the scientific and industrial sectors.
2) We will unleash the innovation potential of the approach, developing an exhaustive exploitation plan, based on a detailed market analysis and a profitable financial plan. We will benchmark our instrument against the competitors’ ones and sign commercial agreements with strategic partners. In the framework of the lean start-up approach, we will draft a first version of a Business Model Canvas and Business Plan in the view of the foundation of a start-up company towards the end of the FLUO project.
Max ERC Funding
150 000 €
Duration
Start date: 2018-11-01, End date: 2020-04-30