Project acronym A-HERO
Project Anthelmintic Research and Optimization
Researcher (PI) Jennifer Irene Keiser
Host Institution (HI) SCHWEIZERISCHES TROPEN- UND PUBLIC HEALTH-INSTITUT
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary "I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Summary
"I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Max ERC Funding
1 927 350 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AGRISCENTS
Project Scents and sensibility in agriculture: exploiting specificity in herbivore- and pathogen-induced plant volatiles for real-time crop monitoring
Researcher (PI) Theodoor Turlings
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Summary
Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Max ERC Funding
2 498 086 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AMAIZE
Project Atlas of leaf growth regulatory networks in MAIZE
Researcher (PI) Dirk, Gustaaf Inzé
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Summary
"Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Max ERC Funding
2 418 429 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Antibodyomics
Project Vaccine profiling and immunodiagnostic discovery by high-throughput antibody repertoire analysis
Researcher (PI) Sai Tota Reddy
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Summary
Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Max ERC Funding
1 492 586 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym Antivessel-T-Cells
Project Development of Vascular-Disrupting Lymphocyte Therapy for Tumours
Researcher (PI) Georgios Coukos
Host Institution (HI) CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Summary
T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym APOLs
Project Role of Apolipoproteins L in immunity and disease
Researcher (PI) Etienne Pays
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Summary
Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Max ERC Funding
2 250 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ASTHMACRYSTALCLEAR
Project Role of protein crystallization in type 2 immunity and asthma
Researcher (PI) Bart LAMBRECHT
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Spontaneous protein crystallization is a rare event in biology. Eosinophilic inflammation such as seen in the airways in asthma, chronic rhinosinusitis and helminth infection is however accompanied by accumulation of large amounts of extracellular Charcot-Leyden crystals. These are made of Galectin-10, a protein of unknown function produced by eosinophils, hallmark cells of type 2 immunity. In mice, eosinophilic inflammation is also accompanied by protein crystal build up, composed of the chitinase-like proteins Ym1 and Ym2, produced by alternatively activated macrophages. Here we challenge the current view that these crystals are just markers of eosinophil demise or macrophages activation. We hypothesize that protein crystallization serves an active role in immunoregulation of type 2 immunity. On the one hand, crystallization might turn a harmless protein into a danger signal. On the other hand, crystallization might sequester and eliminate the physiological function of soluble Galectin-10 and Ym1, or prolong it via slow release elution. For full understanding, we therefore need to understand the function of the proteins in a soluble and crystalline state. Our program at the frontline of immunology, molecular structural biology and clinical science combines innovative tool creation and integrative research to investigate the structure, function, and physiology of galectin-10 and related protein crystals. We chose to study asthma as the crystallizing proteins are abundantly present in human and murine disease. There is still a large medical need for novel therapies that could benefit patients with chronic steroid-resistant disease, and are alternatives to eosinophil-depleting antibodies whose long term effects are unknown.
Summary
Spontaneous protein crystallization is a rare event in biology. Eosinophilic inflammation such as seen in the airways in asthma, chronic rhinosinusitis and helminth infection is however accompanied by accumulation of large amounts of extracellular Charcot-Leyden crystals. These are made of Galectin-10, a protein of unknown function produced by eosinophils, hallmark cells of type 2 immunity. In mice, eosinophilic inflammation is also accompanied by protein crystal build up, composed of the chitinase-like proteins Ym1 and Ym2, produced by alternatively activated macrophages. Here we challenge the current view that these crystals are just markers of eosinophil demise or macrophages activation. We hypothesize that protein crystallization serves an active role in immunoregulation of type 2 immunity. On the one hand, crystallization might turn a harmless protein into a danger signal. On the other hand, crystallization might sequester and eliminate the physiological function of soluble Galectin-10 and Ym1, or prolong it via slow release elution. For full understanding, we therefore need to understand the function of the proteins in a soluble and crystalline state. Our program at the frontline of immunology, molecular structural biology and clinical science combines innovative tool creation and integrative research to investigate the structure, function, and physiology of galectin-10 and related protein crystals. We chose to study asthma as the crystallizing proteins are abundantly present in human and murine disease. There is still a large medical need for novel therapies that could benefit patients with chronic steroid-resistant disease, and are alternatives to eosinophil-depleting antibodies whose long term effects are unknown.
Max ERC Funding
2 499 846 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BINDING FIBRES
Project Soluble dietary fibre: unraveling how weak bonds have a strong impact on function
Researcher (PI) Laura Nyström
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Summary
Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BIONICbacteria
Project Integrating a novel layer of synthetic biology tools in Pseudomonas, inspired by bacterial viruses
Researcher (PI) Rob LAVIGNE
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary As nature’s first bioengineers, bacteriophages have evolved to modify, adapt and control their bacterial hosts through billions of years of interactions. Indeed, like modern synthetic biologists aspire to do, bacteriophages already evade bacterial silencing of their xenogeneic DNA, subvert host gene expression, and co-opt both the central and peripheral metabolisms of their hosts. Studying these key insights from a molecular systems biology perspective, inspired us to develop these evolutionary fully-adapted phage mechanisms as a next-level layer of synthetic biology tools. Thus, BIONICbacteria will provide conceptual novel synthetic biology tools that allow direct manipulation of specific protein activity, post-translational modifications, RNA stability, and metabolite concentrations.
The goal of BIONICbacteria is to pioneer an unconventional way to perform synthetic biology, tapping an unlimited source of novel phage tools genetic circuits and phage modulators. To achieve these goals, we will apply and develop state-of-the-art technologies in molecular microbiology and focus on three principal aims:
(1) To exploit new phage-encoded genetic circuits as synthetic biology parts and as intricate biotechnological chassis.
(2) To build synthetic phage modulators (SPMs) as novel payloads to directly impact the bacterial metabolism in a targeted manner.
(3) To create designer bacteria by integrating SPMs-containing circuits into bacterial strains as proof-of-concepts for applications in industrial fermentations and vaccine design.
This proposed “plug-in” approach of evolutionary-adapted synthetic modules, will allow us to domesticate Pseudomonas strains in radically new ways. By building proofs-of-concept for applications in industrial fermentations and vaccine development, we address key problem in these areas with potentially high-gain solutions for society and industry.
Summary
As nature’s first bioengineers, bacteriophages have evolved to modify, adapt and control their bacterial hosts through billions of years of interactions. Indeed, like modern synthetic biologists aspire to do, bacteriophages already evade bacterial silencing of their xenogeneic DNA, subvert host gene expression, and co-opt both the central and peripheral metabolisms of their hosts. Studying these key insights from a molecular systems biology perspective, inspired us to develop these evolutionary fully-adapted phage mechanisms as a next-level layer of synthetic biology tools. Thus, BIONICbacteria will provide conceptual novel synthetic biology tools that allow direct manipulation of specific protein activity, post-translational modifications, RNA stability, and metabolite concentrations.
The goal of BIONICbacteria is to pioneer an unconventional way to perform synthetic biology, tapping an unlimited source of novel phage tools genetic circuits and phage modulators. To achieve these goals, we will apply and develop state-of-the-art technologies in molecular microbiology and focus on three principal aims:
(1) To exploit new phage-encoded genetic circuits as synthetic biology parts and as intricate biotechnological chassis.
(2) To build synthetic phage modulators (SPMs) as novel payloads to directly impact the bacterial metabolism in a targeted manner.
(3) To create designer bacteria by integrating SPMs-containing circuits into bacterial strains as proof-of-concepts for applications in industrial fermentations and vaccine design.
This proposed “plug-in” approach of evolutionary-adapted synthetic modules, will allow us to domesticate Pseudomonas strains in radically new ways. By building proofs-of-concept for applications in industrial fermentations and vaccine development, we address key problem in these areas with potentially high-gain solutions for society and industry.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BioProbe
Project "VERTICAL MICROFLUIDIC PROBE: A nanoliter ""Swiss army knife"" for chemistry and physics at biological interfaces"
Researcher (PI) Govindkrishna Govind Kaigala
Host Institution (HI) IBM RESEARCH GMBH
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:
(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control.
(2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information.
(3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries.
(4) Patterning cells for applications in regenerative medicine.
Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.
Summary
Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:
(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control.
(2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information.
(3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries.
(4) Patterning cells for applications in regenerative medicine.
Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.
Max ERC Funding
1 488 600 €
Duration
Start date: 2013-01-01, End date: 2017-12-31