Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACTAR TPC
Project Active Target and Time Projection Chamber
Researcher (PI) Gwen Grinyer
Host Institution (HI) GRAND ACCELERATEUR NATIONAL D'IONS LOURDS
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Summary
The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Max ERC Funding
1 290 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien André Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym AtomicGaugeSimulator
Project Classical and Atomic Quantum Simulation of Gauge Theories in Particle and Condensed Matter Physics
Researcher (PI) Uwe-Jens Richard Christian Wiese
Host Institution (HI) UNIVERSITAET BERN
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Summary
Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Max ERC Funding
1 975 242 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BathyBiome
Project The Symbiome of Bathymodiolus Mussels from Hydrothermal Vents: From the Genome
to the Environment
Researcher (PI) Nicole Dubilier
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS8, ERC-2013-ADG
Summary The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Summary
The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Max ERC Funding
2 499 122 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BESTDECISION
Project "Behavioural Economics and Strategic Decision Making: Theory, Empirics, and Experiments"
Researcher (PI) Vincent Paul Crawford
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Summary
"I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Max ERC Funding
1 985 373 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BUBPOL
Project Monetary Policy and Asset Price Bubbles
Researcher (PI) Jordi Galí Garreta
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Summary
"The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Max ERC Funding
799 200 €
Duration
Start date: 2014-01-01, End date: 2017-12-31
Project acronym CALDER
Project Cryogenic wide-Area Light Detectors
with Excellent Resolution
Researcher (PI) Marco Vignati
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "In the comprehension of fundamental laws of nature, particle physics is now facing two important questions:
1) What is the nature of the neutrino, is it a standard (Dirac) particle or a Majorana particle? The nature of the neutrino plays a crucial role in the global framework of particle interactions and in cosmology. The only practicable way to answer this question is to search for a nuclear process called ""neutrinoless double beta decay"" (0nuDBD).
2) What is the so called ""dark matter"" made of? Astrophysical observations suggest that the largest part of the mass of the Universe is composed by a form of matter other than atoms and known matter constituents. We still do not know what dark matter is made of because its rate of interaction with ordinary matter is really low, thus making the direct experimental detection extremely difficult.
Both 0nuDBD and dark matter interactions are rare processes and can be detected using the same experimental technique. Bolometers are promising devices and their combination with light detectors provides the identification of interacting particles, a powerful tool to reduce the background.
The goal of CALDER is to realize a new type of light detectors to improve the upcoming generation of bolometric experiments. The detectors will be designed to feature unprecedented energy resolution and reliability, to ensure an almost complete particle identification. In case of success, CUORE, a 0nuDBD experiment in construction, would gain in sensitivity by up to a factor 6. LUCIFER, a 0nuDBD experiment already implementing the light detection, could be sensitive also to dark matter interactions, thus increasing its research potential. The light detectors will be based on Kinetic Inductance Detectors (KIDs), a new technology that proved its potential in astrophysical applications but that is still new in the field of particle physics and rare event searches."
Summary
"In the comprehension of fundamental laws of nature, particle physics is now facing two important questions:
1) What is the nature of the neutrino, is it a standard (Dirac) particle or a Majorana particle? The nature of the neutrino plays a crucial role in the global framework of particle interactions and in cosmology. The only practicable way to answer this question is to search for a nuclear process called ""neutrinoless double beta decay"" (0nuDBD).
2) What is the so called ""dark matter"" made of? Astrophysical observations suggest that the largest part of the mass of the Universe is composed by a form of matter other than atoms and known matter constituents. We still do not know what dark matter is made of because its rate of interaction with ordinary matter is really low, thus making the direct experimental detection extremely difficult.
Both 0nuDBD and dark matter interactions are rare processes and can be detected using the same experimental technique. Bolometers are promising devices and their combination with light detectors provides the identification of interacting particles, a powerful tool to reduce the background.
The goal of CALDER is to realize a new type of light detectors to improve the upcoming generation of bolometric experiments. The detectors will be designed to feature unprecedented energy resolution and reliability, to ensure an almost complete particle identification. In case of success, CUORE, a 0nuDBD experiment in construction, would gain in sensitivity by up to a factor 6. LUCIFER, a 0nuDBD experiment already implementing the light detection, could be sensitive also to dark matter interactions, thus increasing its research potential. The light detectors will be based on Kinetic Inductance Detectors (KIDs), a new technology that proved its potential in astrophysical applications but that is still new in the field of particle physics and rare event searches."
Max ERC Funding
1 176 758 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CICHLIDX
Project An integrative approach towards the understanding of an adaptive radiation of East African cichlid fishes
Researcher (PI) Walter Salzburger
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS8, ERC-2013-CoG
Summary "More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Summary
"More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Max ERC Funding
1 999 238 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CODE
Project Condensation in designed systems
Researcher (PI) Päivi Elina Törmä
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Summary
"Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Max ERC Funding
1 559 608 €
Duration
Start date: 2013-12-01, End date: 2018-11-30