Project acronym AFRISCREENWORLDS
Project African Screen Worlds: Decolonising Film and Screen Studies
Researcher (PI) Lindiwe Dovey
Host Institution (HI) SCHOOL OF ORIENTAL AND AFRICAN STUDIES ROYAL CHARTER
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Summary
A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Max ERC Funding
1 985 578 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym AMPHIBIANS
Project All Optical Manipulation of Photonic Metasurfaces for Biophotonic Applications in Microfluidic Environments
Researcher (PI) Andrea DI FALCO
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary The current trend in biophotonics is to try and replicate the same ease and precision that our hands, eyes and ears offer at the macroscopic level, e.g. to hold, observe, squeeze and pull, rotate, cut and probe biological specimens in microfluidic environments. The bidding to get closer and closer to the object of interest has prompted the development of extremely advanced manipulation techniques at scales comparable to that of the wavelength of light. However, the fact that the optical beam can only access the microfluidic chip from the narrow aperture of a microscopic objective limits the versatility of the photonic function that can be realized.
With this project, the applicant proposes to introduce a new biophotonic platform based on the all optical manipulation of flexible photonic metasurfaces. These artificial two-dimensional materials have virtually arbitrary photonic responses and have an intrinsic exceptional mechanical stability. This cross-disciplinary project, bridging photonics, material sciences and biology, will enable the adoption of the most modern and advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology.
Summary
The current trend in biophotonics is to try and replicate the same ease and precision that our hands, eyes and ears offer at the macroscopic level, e.g. to hold, observe, squeeze and pull, rotate, cut and probe biological specimens in microfluidic environments. The bidding to get closer and closer to the object of interest has prompted the development of extremely advanced manipulation techniques at scales comparable to that of the wavelength of light. However, the fact that the optical beam can only access the microfluidic chip from the narrow aperture of a microscopic objective limits the versatility of the photonic function that can be realized.
With this project, the applicant proposes to introduce a new biophotonic platform based on the all optical manipulation of flexible photonic metasurfaces. These artificial two-dimensional materials have virtually arbitrary photonic responses and have an intrinsic exceptional mechanical stability. This cross-disciplinary project, bridging photonics, material sciences and biology, will enable the adoption of the most modern and advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology.
Max ERC Funding
1 999 524 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BEBOP
Project Binaries Escorted By Orbiting Planets
Researcher (PI) Amaury TRIAUD
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Summary
Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Max ERC Funding
1 186 313 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CartographY
Project Mapping Stellar Helium
Researcher (PI) Guy DAVIES
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Summary
In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Max ERC Funding
1 496 203 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym DISKtoHALO
Project From the accretion disk to the cluster halo: the multi-scale physics of black hole feedback
Researcher (PI) Christopher REYNOLDS
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Summary
It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Max ERC Funding
2 489 918 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym GMGalaxies
Project Understanding the diversity of galaxy morphology in the era of large spectroscopic surveys
Researcher (PI) Andrew PONTZEN
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary Galaxies are the building blocks of structure in the Universe; this proposal seeks to understand how their shapes, colours and dynamics are determined. For example, what happened in the history of some galaxies to transform them into passive ellipticals while others, seemingly of the same mass and in the same environment, are star-forming spirals? Even such a basic question about the link between morphology and star formation has not yet been answered, revealing our theories of galaxy formation are inadequate. This is a major concern in an era where understanding the shapes of galaxies and how they relate to the underlying dark matter is essential for progress in precision cosmology.
This project will build the missing link between the history of a galaxy and its observational properties (i.e. between cause and effect) by using numerical simulations. Current research in this area rightly gives significant attention to the crucial problem of how feedback – energy input from supernovae, active galactic nuclei, and more – affect observable properties. But as well as investigating this avenue, GM Galaxies will uniquely make use of my new technique (“genetic modification”) to systematically investigate the role of the galaxy’s merging and accretion history at high resolution.
To distinguish the fingerprints of history from the effects of feedback, we will compare to rich new data from integral field unit surveys; these reveal, for example, galactic metallicity and velocity maps. My pilot study for this project shows that such measures of a galaxy disambiguate between alternative formation routes to galaxies which would appear similar by photometric measures alone. Similarly, we will make predictions for the observable properties of the gas reservoir surrounding galaxies and for integral field observations at high redshift. In this way we will make a predictive account of how galactic structure is determined by the interaction of the accretion history with feedback.
Summary
Galaxies are the building blocks of structure in the Universe; this proposal seeks to understand how their shapes, colours and dynamics are determined. For example, what happened in the history of some galaxies to transform them into passive ellipticals while others, seemingly of the same mass and in the same environment, are star-forming spirals? Even such a basic question about the link between morphology and star formation has not yet been answered, revealing our theories of galaxy formation are inadequate. This is a major concern in an era where understanding the shapes of galaxies and how they relate to the underlying dark matter is essential for progress in precision cosmology.
This project will build the missing link between the history of a galaxy and its observational properties (i.e. between cause and effect) by using numerical simulations. Current research in this area rightly gives significant attention to the crucial problem of how feedback – energy input from supernovae, active galactic nuclei, and more – affect observable properties. But as well as investigating this avenue, GM Galaxies will uniquely make use of my new technique (“genetic modification”) to systematically investigate the role of the galaxy’s merging and accretion history at high resolution.
To distinguish the fingerprints of history from the effects of feedback, we will compare to rich new data from integral field unit surveys; these reveal, for example, galactic metallicity and velocity maps. My pilot study for this project shows that such measures of a galaxy disambiguate between alternative formation routes to galaxies which would appear similar by photometric measures alone. Similarly, we will make predictions for the observable properties of the gas reservoir surrounding galaxies and for integral field observations at high redshift. In this way we will make a predictive account of how galactic structure is determined by the interaction of the accretion history with feedback.
Max ERC Funding
1 741 230 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ICYBOB
Project Initial Conditions of YMCs, Birth of OB associations and long term evolution of stellar clusters
Researcher (PI) Clare Louise DOBBS
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary The goal of this proposal is to establish a new era of stellar cluster evolution research by performing numerical simulations on different scales, and of different stages of a cluster’s life, from the formation of YMCs, the formation and evolution of OB associations, to the evolution of clusters and associations in galaxies. The PI is one of the pioneers of galactic simulations of GMC and star formation was one of the first numericists to perform galactic scale simulations of molecular cloud formation and evolution, and has produced some of the most realistic and sophisticated isolated simulations of galaxies in this field to date. The next challenge is to follow cluster evolution, something which has not yet been attempted numerically. And, with the GaiaAIA instrument set to transform stellar astronomy in our Galaxy, our work will provide a fundamental theoretical counterpart. Key questions we will address include i) how does gas disperse from new clusters and what happens to that gas, ii) how do YMCs form, iii) how do new clustersGiant Molecular Clouds (GMCs) evolve into OB associations, and ivii) how long can clusters survive for as they orbit a galaxy and what causes their destruction.
Summary
The goal of this proposal is to establish a new era of stellar cluster evolution research by performing numerical simulations on different scales, and of different stages of a cluster’s life, from the formation of YMCs, the formation and evolution of OB associations, to the evolution of clusters and associations in galaxies. The PI is one of the pioneers of galactic simulations of GMC and star formation was one of the first numericists to perform galactic scale simulations of molecular cloud formation and evolution, and has produced some of the most realistic and sophisticated isolated simulations of galaxies in this field to date. The next challenge is to follow cluster evolution, something which has not yet been attempted numerically. And, with the GaiaAIA instrument set to transform stellar astronomy in our Galaxy, our work will provide a fundamental theoretical counterpart. Key questions we will address include i) how does gas disperse from new clusters and what happens to that gas, ii) how do YMCs form, iii) how do new clustersGiant Molecular Clouds (GMCs) evolve into OB associations, and ivii) how long can clusters survive for as they orbit a galaxy and what causes their destruction.
Max ERC Funding
1 980 385 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym MAPPOLA
Project Mapping out the poetic landscape(s) of the Roman empire: Ethnic and regional variations, socio-cultural diversity, and cross-cultural transformations
Researcher (PI) Peter KRUSCHWITZ
Host Institution (HI) THE UNIVERSITY OF READING
Call Details Advanced Grant (AdG), SH5, ERC-2018-ADG
Summary Poetry was the most affordable art form in the Roman world: all it required were words, and someone with a talent to arrange them in a meaningful, aesthetically convincing way. Yet, the study of Latin poetry has traditionally almost exclusively focused on a small, judiciously transmitted canon of texts – a segment of Rome’s artistic production that favours the poetry that was produced, enjoyed, and controlled, by a political, social, and financial urban elite, reinforcing their claim to cultural superiority.
Focusing on a body of over 4,000 Latin verse inscriptions that have survived from the third century B. C. to Late Antiquity and cover the Roman empire in its entirety, representing ancient Rome’s middle and lower social strata in particular, MAPPOLA is an unprecedented effort to democratise our understanding of Roman poetry.
A fundamentally multidisciplinary project that will make use of recent methodological advances in linguistic, historical, and archaeological scholarship, MAPPOLA’s prime aim is fundamentally to reassess the verse inscriptions as evidence for poetry as a ubiquitous, inclusive cultural practice of the people of ancient Rome beyond the palaces of its urban aristocracy. It will provide answers to the following questions: How is the empire’s considerable regional and ethnic diversity reflected in the engagement with inscribed verse? How and where did poetic landscapes emerge, and what inspired them? What was the cultural and social significance of inscribed Latin verse? How did subcultures and poetic subversion take shape? How did inscribed poetry transcend and transgress artificially imposed boundaries and abstractions?
Over five years, organised into five integrated Work Packages and firmly rooted in the PI’s long-term vision, MAPPOLA will open a new area of empirical and quantitative research, alongside traditional qualititative approaches, into Latin poetry and its European legacy.
Summary
Poetry was the most affordable art form in the Roman world: all it required were words, and someone with a talent to arrange them in a meaningful, aesthetically convincing way. Yet, the study of Latin poetry has traditionally almost exclusively focused on a small, judiciously transmitted canon of texts – a segment of Rome’s artistic production that favours the poetry that was produced, enjoyed, and controlled, by a political, social, and financial urban elite, reinforcing their claim to cultural superiority.
Focusing on a body of over 4,000 Latin verse inscriptions that have survived from the third century B. C. to Late Antiquity and cover the Roman empire in its entirety, representing ancient Rome’s middle and lower social strata in particular, MAPPOLA is an unprecedented effort to democratise our understanding of Roman poetry.
A fundamentally multidisciplinary project that will make use of recent methodological advances in linguistic, historical, and archaeological scholarship, MAPPOLA’s prime aim is fundamentally to reassess the verse inscriptions as evidence for poetry as a ubiquitous, inclusive cultural practice of the people of ancient Rome beyond the palaces of its urban aristocracy. It will provide answers to the following questions: How is the empire’s considerable regional and ethnic diversity reflected in the engagement with inscribed verse? How and where did poetic landscapes emerge, and what inspired them? What was the cultural and social significance of inscribed Latin verse? How did subcultures and poetic subversion take shape? How did inscribed poetry transcend and transgress artificially imposed boundaries and abstractions?
Over five years, organised into five integrated Work Packages and firmly rooted in the PI’s long-term vision, MAPPOLA will open a new area of empirical and quantitative research, alongside traditional qualititative approaches, into Latin poetry and its European legacy.
Max ERC Funding
2 000 529 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym MODES
Project Multimode light shaping: from optical fibers to nanodevices
Researcher (PI) Massimiliano GUASONI
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The project MODES arises in the framework of the emerging interest for nonlinear multimode processes in optical fibers, and wants to extend it to on-chip waveguides and nanoparticles, where the study of the nonlinear multimode dynamics is still on its infancy.
This project is based on a central key-idea: by properly engineering a multimode system, we can shape and master the nonlinear interaction between the modes into play, and finally exploit it for novel applications in several strategic areas.
This project has therefore a dual nature: one key-idea but multidisciplinary, heterogeneous applications. It focuses on 4 main strategic areas (SA) and identifies an objective (OBJ) for each one, which is related to the exploitation of a specific nonlinear multimode process:
SA1: Support technology for Spatial Division Multiplexing (SDM) >>> OBJ1: the project investigates the development of wideband multimode wavelength converters and amplifiers
SA2: High-capacity SDM data-transmission >>>OBJ2: the project investigates the existence of multimode solitons leading to an undistorted, high-quality propagation in multicore and multimode optical fibers
SA3: On-chip infrared optical sources >>>OBJ3: the project targets the development of on-chip, widely tunable optical sources that may be used to selectively detect important environmental gases in the whole infrared spectrum
SA4: Shaping the nonlinear radiation at nanoscale >>>OBJ4: the project aim at developing a new theoretical insight into the way higher-harmonic radiation is emitted in complex nanostructures. Finally, it wants to and to exploit this new knowledge in view of an ultrafast conversion from invisible to visible light.
To conclude, by addressing new theoretical problems and unveiling a new multimode technology, MODES aim at opening new frontiers in nonlinear optics and being pioneer in the field of nonlinear multimode nanophotonics.
Summary
The project MODES arises in the framework of the emerging interest for nonlinear multimode processes in optical fibers, and wants to extend it to on-chip waveguides and nanoparticles, where the study of the nonlinear multimode dynamics is still on its infancy.
This project is based on a central key-idea: by properly engineering a multimode system, we can shape and master the nonlinear interaction between the modes into play, and finally exploit it for novel applications in several strategic areas.
This project has therefore a dual nature: one key-idea but multidisciplinary, heterogeneous applications. It focuses on 4 main strategic areas (SA) and identifies an objective (OBJ) for each one, which is related to the exploitation of a specific nonlinear multimode process:
SA1: Support technology for Spatial Division Multiplexing (SDM) >>> OBJ1: the project investigates the development of wideband multimode wavelength converters and amplifiers
SA2: High-capacity SDM data-transmission >>>OBJ2: the project investigates the existence of multimode solitons leading to an undistorted, high-quality propagation in multicore and multimode optical fibers
SA3: On-chip infrared optical sources >>>OBJ3: the project targets the development of on-chip, widely tunable optical sources that may be used to selectively detect important environmental gases in the whole infrared spectrum
SA4: Shaping the nonlinear radiation at nanoscale >>>OBJ4: the project aim at developing a new theoretical insight into the way higher-harmonic radiation is emitted in complex nanostructures. Finally, it wants to and to exploit this new knowledge in view of an ultrafast conversion from invisible to visible light.
To conclude, by addressing new theoretical problems and unveiling a new multimode technology, MODES aim at opening new frontiers in nonlinear optics and being pioneer in the field of nonlinear multimode nanophotonics.
Max ERC Funding
1 450 455 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym MOPPEX
Project MOlecules as Probes of the Physics of EXternal galaxies
Researcher (PI) Serena Viti
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary Molecules pervade the cooler, denser parts of our Universe, in particular the reservoirs of the matter that forms stars and planets, and the gas in the centres of galaxies. In the Milky Way we routinely use molecules to discover and explore these regions and the more complex the chemistry, the more details of the gas the molecules reveal. There are one hundred billion galaxies in the observable Universe. About 200 or so are our neighbours. However, due to their distance, we are still not able to zoom in and observe individual clouds of dense gas. Nevertheless with the advent of ever more sensitive telescopes such as ALMA, we are discovering that chemistry in external galaxies is as complex as in our own Milky Way. Molecules, it seems, are universal and widespread.
In MOPPEX I use molecules to shed light on the physical and chemical structure of our local galaxies, namely (i) what the energetic processes that determine their appearance are and (ii) where the matter that will form stars or fuels black holes is, with the ultimate goal to understand how galaxies form, evolve and interact with each other. To achieve this objective I propose a multi-faceted program that combines state of the art chemical and statistical models in conjunction with interferometric observations. More specifically, the success of MOPPEX relies on (i) in-house and open source suites of chemical models and an in-house line radiative transfer model, (ii) a new suite of tools comprising of modular statistical and machine learning algorithms, and (iii) large datasets of observational data on two nearby galaxies differing in types.
My ultimate objective is to fundamentally change the way molecular observations are interpreted for external galaxies and thus to cause a paradigm shift in the use of molecules as tools to determine the chemistry and physics of galaxies.
Summary
Molecules pervade the cooler, denser parts of our Universe, in particular the reservoirs of the matter that forms stars and planets, and the gas in the centres of galaxies. In the Milky Way we routinely use molecules to discover and explore these regions and the more complex the chemistry, the more details of the gas the molecules reveal. There are one hundred billion galaxies in the observable Universe. About 200 or so are our neighbours. However, due to their distance, we are still not able to zoom in and observe individual clouds of dense gas. Nevertheless with the advent of ever more sensitive telescopes such as ALMA, we are discovering that chemistry in external galaxies is as complex as in our own Milky Way. Molecules, it seems, are universal and widespread.
In MOPPEX I use molecules to shed light on the physical and chemical structure of our local galaxies, namely (i) what the energetic processes that determine their appearance are and (ii) where the matter that will form stars or fuels black holes is, with the ultimate goal to understand how galaxies form, evolve and interact with each other. To achieve this objective I propose a multi-faceted program that combines state of the art chemical and statistical models in conjunction with interferometric observations. More specifically, the success of MOPPEX relies on (i) in-house and open source suites of chemical models and an in-house line radiative transfer model, (ii) a new suite of tools comprising of modular statistical and machine learning algorithms, and (iii) large datasets of observational data on two nearby galaxies differing in types.
My ultimate objective is to fundamentally change the way molecular observations are interpreted for external galaxies and thus to cause a paradigm shift in the use of molecules as tools to determine the chemistry and physics of galaxies.
Max ERC Funding
2 461 503 €
Duration
Start date: 2019-12-01, End date: 2024-11-30