Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AFRISCREENWORLDS
Project African Screen Worlds: Decolonising Film and Screen Studies
Researcher (PI) Lindiwe Dovey
Host Institution (HI) SCHOOL OF ORIENTAL AND AFRICAN STUDIES ROYAL CHARTER
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Summary
A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Max ERC Funding
1 985 578 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym AMPHIBIANS
Project All Optical Manipulation of Photonic Metasurfaces for Biophotonic Applications in Microfluidic Environments
Researcher (PI) Andrea DI FALCO
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary The current trend in biophotonics is to try and replicate the same ease and precision that our hands, eyes and ears offer at the macroscopic level, e.g. to hold, observe, squeeze and pull, rotate, cut and probe biological specimens in microfluidic environments. The bidding to get closer and closer to the object of interest has prompted the development of extremely advanced manipulation techniques at scales comparable to that of the wavelength of light. However, the fact that the optical beam can only access the microfluidic chip from the narrow aperture of a microscopic objective limits the versatility of the photonic function that can be realized.
With this project, the applicant proposes to introduce a new biophotonic platform based on the all optical manipulation of flexible photonic metasurfaces. These artificial two-dimensional materials have virtually arbitrary photonic responses and have an intrinsic exceptional mechanical stability. This cross-disciplinary project, bridging photonics, material sciences and biology, will enable the adoption of the most modern and advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology.
Summary
The current trend in biophotonics is to try and replicate the same ease and precision that our hands, eyes and ears offer at the macroscopic level, e.g. to hold, observe, squeeze and pull, rotate, cut and probe biological specimens in microfluidic environments. The bidding to get closer and closer to the object of interest has prompted the development of extremely advanced manipulation techniques at scales comparable to that of the wavelength of light. However, the fact that the optical beam can only access the microfluidic chip from the narrow aperture of a microscopic objective limits the versatility of the photonic function that can be realized.
With this project, the applicant proposes to introduce a new biophotonic platform based on the all optical manipulation of flexible photonic metasurfaces. These artificial two-dimensional materials have virtually arbitrary photonic responses and have an intrinsic exceptional mechanical stability. This cross-disciplinary project, bridging photonics, material sciences and biology, will enable the adoption of the most modern and advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology.
Max ERC Funding
1 999 524 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AN-ICON
Project An-Iconology: History, Theory, and Practices of Environmental Images
Researcher (PI) Andrea PINOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Advanced Grant (AdG), SH5, ERC-2018-ADG
Summary "Recent developments in image-making techniques have resulted in a drastic blurring of the threshold between the world of the image and the real world. Immersive and interactive virtual environments have enabled the production of pictures that elicit in the perceiver a strong feeling of being incorporated in a quasi-real world. In doing so such pictures conceal their mediateness (their being based on a material support), their referentiality (their pointing to an extra-iconic dimension), and their separateness (normally assured by framing devices), paradoxically challenging their status as images, as icons: they are veritable “an-icons”.
This kind of pictures undermines the mainstream paradigm of Western image theories, shared by major models such as the doctrine of mimesis, the phenomenological account of image-consciousness, the analytic theories of depiction, the semiotic and iconological methods. These approaches miss the key counter-properties regarding an-icons as ""environmental"" images: their immediateness, unframedness, and presentness. Subjects relating to an-icons are no longer visual observers of images; they are experiencers living in a quasi-real environment that allows multisensory affordances and embodied agencies.
AN-ICON aims to develop “an-iconology” as a new methodological approach able to address this challenging iconoscape. Such an approach needs to be articulated in a transdisciplinary and transmedial way: 1) HISTORY – a media-archaeological reconstruction will provide a taxonomy of the manifold an-iconic strategies (e.g. illusionistic painting, pre-cinematic dispositifs, 3D films, video games, head mounted displays); 2) THEORY – an experiential account (drawing on phenomenology, visual culture and media studies) will identify the an-iconic key concepts; 3) PRACTICES – a socio-cultural section will explore the multifaceted impact of an-iconic images, environments and technologies on contemporary professional domains as well as on everyday life.
"
Summary
"Recent developments in image-making techniques have resulted in a drastic blurring of the threshold between the world of the image and the real world. Immersive and interactive virtual environments have enabled the production of pictures that elicit in the perceiver a strong feeling of being incorporated in a quasi-real world. In doing so such pictures conceal their mediateness (their being based on a material support), their referentiality (their pointing to an extra-iconic dimension), and their separateness (normally assured by framing devices), paradoxically challenging their status as images, as icons: they are veritable “an-icons”.
This kind of pictures undermines the mainstream paradigm of Western image theories, shared by major models such as the doctrine of mimesis, the phenomenological account of image-consciousness, the analytic theories of depiction, the semiotic and iconological methods. These approaches miss the key counter-properties regarding an-icons as ""environmental"" images: their immediateness, unframedness, and presentness. Subjects relating to an-icons are no longer visual observers of images; they are experiencers living in a quasi-real environment that allows multisensory affordances and embodied agencies.
AN-ICON aims to develop “an-iconology” as a new methodological approach able to address this challenging iconoscape. Such an approach needs to be articulated in a transdisciplinary and transmedial way: 1) HISTORY – a media-archaeological reconstruction will provide a taxonomy of the manifold an-iconic strategies (e.g. illusionistic painting, pre-cinematic dispositifs, 3D films, video games, head mounted displays); 2) THEORY – an experiential account (drawing on phenomenology, visual culture and media studies) will identify the an-iconic key concepts; 3) PRACTICES – a socio-cultural section will explore the multifaceted impact of an-iconic images, environments and technologies on contemporary professional domains as well as on everyday life.
"
Max ERC Funding
2 328 736 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym AncientAdhesives
Project Ancient Adhesives - A window on prehistoric technological complexity
Researcher (PI) Geeske LANGEJANS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Summary
AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Max ERC Funding
1 499 926 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARCHCAUCASUS
Project Technical and Social Innovations in the Caucasus: between the Eurasian Steppe and the Earliest Cities in the 4th and 3rd millennia BC
Researcher (PI) Svend HANSEN
Host Institution (HI) DEUTSCHES ARCHAOLOGISCHES INSTITUT
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Summary
This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Max ERC Funding
2 487 875 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym ArtHistCEE
Project Art Historiographies in Central and Eastern EuropeAn Inquiry from the Perspective of Entangled Histories
Researcher (PI) Ada HAJDU
Host Institution (HI) FUNDATIA NOUA EUROPA
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Summary
Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Max ERC Funding
1 192 250 €
Duration
Start date: 2018-10-01, End date: 2023-09-30