Project acronym B Massive
Project Binary massive black hole astrophysics
Researcher (PI) Alberto SESANA
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary Massive black hole binaries (MBHBs) are the most extreme, fascinating yet elusive astrophysical objects in the Universe. Establishing observationally their existence will be a milestone for contemporary astronomy, providing a fundamental missing piece in the puzzle of galaxy formation, piercing through the (hydro)dynamical physical processes shaping dense galactic nuclei from parsec scales down to the event horizon, and probing gravity in extreme conditions.
We can both see and listen to MBHBs. Remarkably, besides arguably being among the brightest variable objects shining in the Cosmos, MBHBs are also the loudest gravitational wave (GW) sources in the Universe. As such, we shall take advantage of both the type of messengers – photons and gravitons – they are sending to us, which can now be probed by all-sky time-domain surveys and radio pulsar timing arrays (PTAs) respectively.
B MASSIVE leverages on a unique comprehensive approach combining theoretical astrophysics, radio and gravitational-wave astronomy and time-domain surveys, with state of the art data analysis techniques to: i) observationally prove the existence of MBHBs, ii) understand and constrain their astrophysics and dynamics, iii) enable and bring closer in time the direct detection of GWs with PTA.
As European PTA (EPTA) executive committee member and former I
International PTA (IPTA) chair, I am a driving force in the development of pulsar timing science world-wide, and the project will build on the profound knowledge, broad vision and wide collaboration network that established me as a world leader in the field of MBHB and GW astrophysics. B MASSIVE is extremely timely; a pulsar timing data set of unprecedented quality is being assembled by EPTA/IPTA, and Time-Domain astronomy surveys are at their dawn. In the long term, B MASSIVE will be a fundamental milestone establishing European leadership in the cutting-edge field of MBHB astrophysics in the era of LSST, SKA and LISA.
Summary
Massive black hole binaries (MBHBs) are the most extreme, fascinating yet elusive astrophysical objects in the Universe. Establishing observationally their existence will be a milestone for contemporary astronomy, providing a fundamental missing piece in the puzzle of galaxy formation, piercing through the (hydro)dynamical physical processes shaping dense galactic nuclei from parsec scales down to the event horizon, and probing gravity in extreme conditions.
We can both see and listen to MBHBs. Remarkably, besides arguably being among the brightest variable objects shining in the Cosmos, MBHBs are also the loudest gravitational wave (GW) sources in the Universe. As such, we shall take advantage of both the type of messengers – photons and gravitons – they are sending to us, which can now be probed by all-sky time-domain surveys and radio pulsar timing arrays (PTAs) respectively.
B MASSIVE leverages on a unique comprehensive approach combining theoretical astrophysics, radio and gravitational-wave astronomy and time-domain surveys, with state of the art data analysis techniques to: i) observationally prove the existence of MBHBs, ii) understand and constrain their astrophysics and dynamics, iii) enable and bring closer in time the direct detection of GWs with PTA.
As European PTA (EPTA) executive committee member and former I
International PTA (IPTA) chair, I am a driving force in the development of pulsar timing science world-wide, and the project will build on the profound knowledge, broad vision and wide collaboration network that established me as a world leader in the field of MBHB and GW astrophysics. B MASSIVE is extremely timely; a pulsar timing data set of unprecedented quality is being assembled by EPTA/IPTA, and Time-Domain astronomy surveys are at their dawn. In the long term, B MASSIVE will be a fundamental milestone establishing European leadership in the cutting-edge field of MBHB astrophysics in the era of LSST, SKA and LISA.
Max ERC Funding
1 532 750 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BrightEyes
Project Multi-Parameter Live-Cell Observation of Biomolecular Processes with Single-Photon Detector Array
Researcher (PI) Giuseppe Vicidomini
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Summary
Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Max ERC Funding
1 861 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym DIAPASoN
Project Differential Program Semantics
Researcher (PI) Ugo DAL LAGO
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), PE6, ERC-2018-COG
Summary Traditionally, program semantics is centered around the notion of program identity, that is to say of program equivalence: a program is identified with its meaning, and programs are considered as equal only if their meanings are the same. This view has been extremely fruitful in the past, allowing for a deep understanding of highly interactive forms of computation as embodied by higher-order or concurrent programs. The byproducts of all this lie everywhere in computer science, from programming language design to verification methodologies. The emphasis on equality — as opposed to differences — is not however in line with the way programs are written and structured in modern complex software systems. Subtasks are delegated to pieces of code which behave as expected only up to a certain probability of error, and only if the environment in which they operate makes this possible deviation irrelevant. These aspects have been almost neglected by the program semantics community until recently, and still have a marginal role. DIAPASON's goal is to study differences between programs as a constitutive and informative concept, rather than by way of relations between them. This will be accomplished by generalizing four major frameworks of program semantics, traditionally used for giving semantics to programs, comparing them, proving properties of them, and controlling their usage of resources: logical relations, bisimulation, game semantics, and linear logic.
Summary
Traditionally, program semantics is centered around the notion of program identity, that is to say of program equivalence: a program is identified with its meaning, and programs are considered as equal only if their meanings are the same. This view has been extremely fruitful in the past, allowing for a deep understanding of highly interactive forms of computation as embodied by higher-order or concurrent programs. The byproducts of all this lie everywhere in computer science, from programming language design to verification methodologies. The emphasis on equality — as opposed to differences — is not however in line with the way programs are written and structured in modern complex software systems. Subtasks are delegated to pieces of code which behave as expected only up to a certain probability of error, and only if the environment in which they operate makes this possible deviation irrelevant. These aspects have been almost neglected by the program semantics community until recently, and still have a marginal role. DIAPASON's goal is to study differences between programs as a constitutive and informative concept, rather than by way of relations between them. This will be accomplished by generalizing four major frameworks of program semantics, traditionally used for giving semantics to programs, comparing them, proving properties of them, and controlling their usage of resources: logical relations, bisimulation, game semantics, and linear logic.
Max ERC Funding
959 562 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym FREENERGY
Project Lead-free halide perovskites for the highest efficient solar energy conversion
Researcher (PI) Antonio ABATE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Achieving zero net carbon emissions by the end of the century is the challenge for capping global warming. The largest share of carbon emissions belongs to the production of electric energy from fossil fuels, which renewable energies are progressively replacing. Sunlight is an ideal renewable energy source since it is most abundant and available worldwide. Photovoltaic solar cells can directly convert the sunlight into electric energy by making use of the photovoltaic effect in semiconductors. Halide perovskites are emerging crystalline semiconducting materials with among the strongest light absorption and the most effective electric charge generation needed to design the highest efficient photovoltaic solar cells. The PI has the ambition to reinvent halide perovskites as environmentally friendly photovoltaic material, aiming at:
(i) Removing lead: state-of-the-art perovskite solar cells are based on lead, which is in the list of hazardous substances of the European Union. The PI will prepare new tin-based perovskites and prove them in the highest efficient solar cells.
(ii) Solvent-free crystallisation: organic solvents drive the crystallisation of the perovskite in the most efficient solar cells. However, crystallising the perovskite without using solvents is more environmentally friendly. The PI will establish physical vapour deposition as a solvent-free method for preparing the perovskite and the other materials comprising the solar cell.
(iii) Durable power output: the long-term power output defines the solar energy yield and thus the return on investment. The PI aims to make stable tin-based perovskites addressing the oxidative instability of tin directly.
The quantified target of FREENERGY is demonstrating a tin-based perovskite solar cell with power conversion efficiency over 20% and stability for 25 years. The research strategy to enable this disruptive outcome comprises innovative perovskites formulations and unconventional supramolecular interactions
Summary
Achieving zero net carbon emissions by the end of the century is the challenge for capping global warming. The largest share of carbon emissions belongs to the production of electric energy from fossil fuels, which renewable energies are progressively replacing. Sunlight is an ideal renewable energy source since it is most abundant and available worldwide. Photovoltaic solar cells can directly convert the sunlight into electric energy by making use of the photovoltaic effect in semiconductors. Halide perovskites are emerging crystalline semiconducting materials with among the strongest light absorption and the most effective electric charge generation needed to design the highest efficient photovoltaic solar cells. The PI has the ambition to reinvent halide perovskites as environmentally friendly photovoltaic material, aiming at:
(i) Removing lead: state-of-the-art perovskite solar cells are based on lead, which is in the list of hazardous substances of the European Union. The PI will prepare new tin-based perovskites and prove them in the highest efficient solar cells.
(ii) Solvent-free crystallisation: organic solvents drive the crystallisation of the perovskite in the most efficient solar cells. However, crystallising the perovskite without using solvents is more environmentally friendly. The PI will establish physical vapour deposition as a solvent-free method for preparing the perovskite and the other materials comprising the solar cell.
(iii) Durable power output: the long-term power output defines the solar energy yield and thus the return on investment. The PI aims to make stable tin-based perovskites addressing the oxidative instability of tin directly.
The quantified target of FREENERGY is demonstrating a tin-based perovskite solar cell with power conversion efficiency over 20% and stability for 25 years. The research strategy to enable this disruptive outcome comprises innovative perovskites formulations and unconventional supramolecular interactions
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym GASP
Project GAs Stripping Phenomena in galaxies
Researcher (PI) Bianca Maria POGGIANTI
Host Institution (HI) ISTITUTO NAZIONALE DI ASTROFISICA
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary The build up of galaxies is mainly driven by the availability of gas that can cool and form new stars. Any physical process that is able to alter the gas content of a galaxy has therefore important consequences for its evolution. The study of processes that can remove gas from galaxies is the subject of GASP (GAs Stripping Phenomena in galaxies), an ESO Large Program I am leading. GASP has obtained integral field spectroscopy (IFS) with MUSE of 114 low-z galaxies with masses in the range 10^9-10^11.5 Msun, hosted in X-ray selected clusters, in groups and filaments. The GASP sample includes the largest existing IFS sample of so- called “jellyfish galaxies” that have long tails of ionised gas, as well as other galaxies in different stages of ram pressure stripping in clusters and galaxies undergoing gas disturbance due to various phenomena in groups and filaments. GASP has the unique capability to combine the power of spatially resolved observations covering galaxy disks, outskirts and surroundings with the virtues of a statistical study of a significant number of galaxies. The MUSE GASP dataset, combined with ALMA, APEX, JVLA, UVIT and HST follow-up programs, form the basis for this ERC program. The goal is to accomplish an unprecedented break-through in our understanding of jellyfish galaxies, ram pressure stripping, gas removal processes in different environments and their consequences for the stellar history of galaxies. This multi faced, coherent program will investigate the physics of the baryonic cycle between the various gas phases (ionised, molecular and neutral) and the star formation under extreme conditions, the connection between ram pressure and AGN activity, the quenching of galaxies undergoing gas removal phenomena, and the physics of such phenomena in clusters, groups and filaments. The GASP ERC program will be a game changer in this field of research: there is no previous similar study, nor there can be a comparable one for quite a long time.
Summary
The build up of galaxies is mainly driven by the availability of gas that can cool and form new stars. Any physical process that is able to alter the gas content of a galaxy has therefore important consequences for its evolution. The study of processes that can remove gas from galaxies is the subject of GASP (GAs Stripping Phenomena in galaxies), an ESO Large Program I am leading. GASP has obtained integral field spectroscopy (IFS) with MUSE of 114 low-z galaxies with masses in the range 10^9-10^11.5 Msun, hosted in X-ray selected clusters, in groups and filaments. The GASP sample includes the largest existing IFS sample of so- called “jellyfish galaxies” that have long tails of ionised gas, as well as other galaxies in different stages of ram pressure stripping in clusters and galaxies undergoing gas disturbance due to various phenomena in groups and filaments. GASP has the unique capability to combine the power of spatially resolved observations covering galaxy disks, outskirts and surroundings with the virtues of a statistical study of a significant number of galaxies. The MUSE GASP dataset, combined with ALMA, APEX, JVLA, UVIT and HST follow-up programs, form the basis for this ERC program. The goal is to accomplish an unprecedented break-through in our understanding of jellyfish galaxies, ram pressure stripping, gas removal processes in different environments and their consequences for the stellar history of galaxies. This multi faced, coherent program will investigate the physics of the baryonic cycle between the various gas phases (ionised, molecular and neutral) and the star formation under extreme conditions, the connection between ram pressure and AGN activity, the quenching of galaxies undergoing gas removal phenomena, and the physics of such phenomena in clusters, groups and filaments. The GASP ERC program will be a game changer in this field of research: there is no previous similar study, nor there can be a comparable one for quite a long time.
Max ERC Funding
2 498 238 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym GEMS
Project General Embedding Models for Spectroscopy
Researcher (PI) Chiara CAPPELLI
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Recently, there has been a paradigmatic shift in experimental molecular spectroscopy, with new methods focusing on the study of molecules embedded within complex supramolecular/nanostructured aggregates. In the past, molecular spectroscopy has benefitted from the synergistic developments of accurate and cost-effective computational protocols for the simulation of a wide variety of spectroscopies. These methods, however, have been limited to isolated molecules or systems in solution, therefore are inadequate to describe the spectroscopy of complex nanostructured systems. The aim of GEMS is to bridge this gap, and to provide a coherent theoretical description and cost-effective computational tools for the simulation of spectra of molecules interacting with metal nano-particles, metal nanoaggregates and graphene sheets.
To this end, I will develop a novel frequency-dependent multilayer Quantum Mechanical (QM)/Molecular Mechanics (MM) embedding approach, general enough to be extendable to spectroscopic signals by using the machinery of quantum chemistry and able to treat any kind of plasmonic external environment by resorting to the same theoretical framework, but introducing its specificities through an accurate modelling and parametrization of the classical portion. The model will be interfaced with widely used computational chemistry software packages, so to maximize its use by the scientific community, and especially by non-specialists.
As pilot applications, GEMS will study the Surface-Enhanced Raman (SERS) spectra of systems that have found applications in the biosensor field, SERS of organic molecules in subnanometre junctions, enhanced infrared (IR) spectra of oligopeptides adsorbed on graphene, Graphene Enhanced Raman Scattering (GERS) of organic dyes, and the transmission of stereochemical response from a chiral analyte to an achiral molecule in the vicinity of a plasmon resonance of an achiral metallic nanostructure, as measured by Raman Optical Activity-ROA
Summary
Recently, there has been a paradigmatic shift in experimental molecular spectroscopy, with new methods focusing on the study of molecules embedded within complex supramolecular/nanostructured aggregates. In the past, molecular spectroscopy has benefitted from the synergistic developments of accurate and cost-effective computational protocols for the simulation of a wide variety of spectroscopies. These methods, however, have been limited to isolated molecules or systems in solution, therefore are inadequate to describe the spectroscopy of complex nanostructured systems. The aim of GEMS is to bridge this gap, and to provide a coherent theoretical description and cost-effective computational tools for the simulation of spectra of molecules interacting with metal nano-particles, metal nanoaggregates and graphene sheets.
To this end, I will develop a novel frequency-dependent multilayer Quantum Mechanical (QM)/Molecular Mechanics (MM) embedding approach, general enough to be extendable to spectroscopic signals by using the machinery of quantum chemistry and able to treat any kind of plasmonic external environment by resorting to the same theoretical framework, but introducing its specificities through an accurate modelling and parametrization of the classical portion. The model will be interfaced with widely used computational chemistry software packages, so to maximize its use by the scientific community, and especially by non-specialists.
As pilot applications, GEMS will study the Surface-Enhanced Raman (SERS) spectra of systems that have found applications in the biosensor field, SERS of organic molecules in subnanometre junctions, enhanced infrared (IR) spectra of oligopeptides adsorbed on graphene, Graphene Enhanced Raman Scattering (GERS) of organic dyes, and the transmission of stereochemical response from a chiral analyte to an achiral molecule in the vicinity of a plasmon resonance of an achiral metallic nanostructure, as measured by Raman Optical Activity-ROA
Max ERC Funding
1 609 500 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym GRAMS
Project GRavity from Astrophysical to Microscopic Scales
Researcher (PI) Enrico BARAUSSE
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary General Relativity (GR) describes gravity on a huge range of scales, field strengths and velocities. However, despite its successes, GR has been showing its age. Cosmological data support the existence of a Dark Sector, but may also be interpreted as a breakdown of our understanding of gravity. Also, GR is intrinsically incompatible with quantum field theory, and should be replaced, at high energies, by a (still unknown) quantum theory of gravity.
This deadlock may prelude to a paradigm change in our understanding of gravity, possibly triggered by the direct observations of neutron stars and black holes by gravitational-wave interferometers. The recent LIGO/Virgo observations, and in particular the coincident detection of electromagnetic and gravitational signals from neutron-star binaries, have already made a huge impact on our theoretical understanding of gravity, by severely constraining several extensions of GR.
GRAMS is a high-risk/high-gain project seeking to push the implications of these observations even further, by exploring whether the existing LIGO/Virgo data, and in particular their absence of non-perturbative deviations from GR, are consistent with gravitational theories built to reproduce the large-scale behaviour of the Universe (i.e. the existence of Dark Energy and/or Dark Matter), while at the same time passing local tests of gravity thanks to non-perturbative screening mechanisms. I will prove that the very fact of screening local scales makes gravitational emission in these theories much more involved than in GR, and also intrinsically unlikely to yield results in agreement with existing (and future) gravitational-wave observations. This would be a huge step forward for our understanding of cosmology, as it would rule out a modified gravity origin for the Dark Sector. Even if this conjecture is incorrect, GRAMS will provide the first numerical-relativity simulations of compact binaries ever in gravitational theories of interest for cosmology.
Summary
General Relativity (GR) describes gravity on a huge range of scales, field strengths and velocities. However, despite its successes, GR has been showing its age. Cosmological data support the existence of a Dark Sector, but may also be interpreted as a breakdown of our understanding of gravity. Also, GR is intrinsically incompatible with quantum field theory, and should be replaced, at high energies, by a (still unknown) quantum theory of gravity.
This deadlock may prelude to a paradigm change in our understanding of gravity, possibly triggered by the direct observations of neutron stars and black holes by gravitational-wave interferometers. The recent LIGO/Virgo observations, and in particular the coincident detection of electromagnetic and gravitational signals from neutron-star binaries, have already made a huge impact on our theoretical understanding of gravity, by severely constraining several extensions of GR.
GRAMS is a high-risk/high-gain project seeking to push the implications of these observations even further, by exploring whether the existing LIGO/Virgo data, and in particular their absence of non-perturbative deviations from GR, are consistent with gravitational theories built to reproduce the large-scale behaviour of the Universe (i.e. the existence of Dark Energy and/or Dark Matter), while at the same time passing local tests of gravity thanks to non-perturbative screening mechanisms. I will prove that the very fact of screening local scales makes gravitational emission in these theories much more involved than in GR, and also intrinsically unlikely to yield results in agreement with existing (and future) gravitational-wave observations. This would be a huge step forward for our understanding of cosmology, as it would rule out a modified gravity origin for the Dark Sector. Even if this conjecture is incorrect, GRAMS will provide the first numerical-relativity simulations of compact binaries ever in gravitational theories of interest for cosmology.
Max ERC Funding
1 993 920 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym HY-NANO
Project HYbrid NANOstructured multi-functional interfaces for stable, efficient and eco-friendly photovoltaic devices
Researcher (PI) Giulia GRANCINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary HY-NANO focuses on one of the current major challenges in Europe: a global transition to a low-carbon society and green economy by 2050. Solar energy can lead a “paradigm shift” in the energy sector with a new low-cost, efficient, and stable technology (3-pillars strategy). Nowadays, low-cost three dimensional (3D) Hybrid Perovskites (HP) solar cells are revolutionizing the photovoltaic scene, with stunning power conversion efficiency beyond 22%. However, poor device stability (due to degradation in contact with water) and dependence on toxic components (lead) substantially hamper their commercialization.
HY-NANO aims to realize a new low-cost and efficient hybrid solar technology combining long-term stability with a reduced environmental impact. Design and engineering innovative multi-dimensional hybrid interfaces is the core idea. This will be achieved by: 1. design and characterization of new stable and eco-friendly perovskites structures, with tunable composition and dimensionality ranging from 3D to 2D; 2. exploiting new synergistic functions by combining 3D and 2D perovskites together into novel stable and efficient multi-dimensional interfaces while addressing the interface physics therein; 3. integrating the hybrid interfaces into high efficient and stable device architectures engineered “ad hoc”. In addition, I propose the development of new solar cell encapsulant using metal-organic frameworks (MOFs) functionalized as selective lead receptors to minimize the environmental risks associated with the potential release of lead.
My multidisciplinary expertise in advanced material design, cutting-edge photophysical experimental investigations, and solar cell engineering will enable me to successfully target the ambitious goals. HY-NANO is timely and it will generate the new fundamental knowledge that is urgently needed for a scientific and technological breakthrough in materials and devices for near future photovoltaics.
Summary
HY-NANO focuses on one of the current major challenges in Europe: a global transition to a low-carbon society and green economy by 2050. Solar energy can lead a “paradigm shift” in the energy sector with a new low-cost, efficient, and stable technology (3-pillars strategy). Nowadays, low-cost three dimensional (3D) Hybrid Perovskites (HP) solar cells are revolutionizing the photovoltaic scene, with stunning power conversion efficiency beyond 22%. However, poor device stability (due to degradation in contact with water) and dependence on toxic components (lead) substantially hamper their commercialization.
HY-NANO aims to realize a new low-cost and efficient hybrid solar technology combining long-term stability with a reduced environmental impact. Design and engineering innovative multi-dimensional hybrid interfaces is the core idea. This will be achieved by: 1. design and characterization of new stable and eco-friendly perovskites structures, with tunable composition and dimensionality ranging from 3D to 2D; 2. exploiting new synergistic functions by combining 3D and 2D perovskites together into novel stable and efficient multi-dimensional interfaces while addressing the interface physics therein; 3. integrating the hybrid interfaces into high efficient and stable device architectures engineered “ad hoc”. In addition, I propose the development of new solar cell encapsulant using metal-organic frameworks (MOFs) functionalized as selective lead receptors to minimize the environmental risks associated with the potential release of lead.
My multidisciplinary expertise in advanced material design, cutting-edge photophysical experimental investigations, and solar cell engineering will enable me to successfully target the ambitious goals. HY-NANO is timely and it will generate the new fundamental knowledge that is urgently needed for a scientific and technological breakthrough in materials and devices for near future photovoltaics.
Max ERC Funding
1 499 084 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym HyGate
Project Hydrophobic Gating in nanochannels: understanding single channel mechanisms for designing better nanoscale sensors
Researcher (PI) Alberto GIACOMELLO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Hydrophobic gating is the phenomenon by which the flux of ions or other molecules through biological ion channels or synthetic nanopores is hindered by the formation of nanoscale bubbles. Recent studies suggest that this is a generic mechanism for the inactivation of a plethora of ion channels, which are all characterized by a strongly hydrophobic interior. The conformation, compliance, and hydrophobicity of the nanochannels – in addition to external parameters such as electric potential, pressure, presence of gases – have a dramatic influence on the probability of opening and closing of the gate. This largely unexplored confined phase transition is known to cause low frequency noise in solid-state nanopores used for DNA sequencing and sensing, limiting their applicability. In biological channels, hydrophobic gating might conspire in determining the high selectivity towards a specific ions or molecules, a characteristic which is sought for in biosensors.
The objective of HyGate is to unravel the fundamental mechanisms of hydrophobic gating in model nanopores and biological ion channels and exploit their understanding in order to design biosensors with lower noise and higher selectivity. In order to achieve this ambitious goal, I will deploy the one-of-a-kind simulation and theoretical tools I developed to study vapor nucleation in extreme confinement, which comprises rare-event molecular dynamics and confined nucleation theory. These quantitative tools will be instrumental in designing better biosensors and nanodevices which avoid the formation of nanobubbles or exploit them to achieve exquisite species selectivity. The novel physical insights into the behavior of water in complex nanoconfined environments are expected to inspire radically innovative strategies for nanopore sensing and nanofluidic circuits and to promote a stepwise advancement in the fundamental understanding of hydrophobic gating mechanisms and their influence on bio-electrical cell response.
Summary
Hydrophobic gating is the phenomenon by which the flux of ions or other molecules through biological ion channels or synthetic nanopores is hindered by the formation of nanoscale bubbles. Recent studies suggest that this is a generic mechanism for the inactivation of a plethora of ion channels, which are all characterized by a strongly hydrophobic interior. The conformation, compliance, and hydrophobicity of the nanochannels – in addition to external parameters such as electric potential, pressure, presence of gases – have a dramatic influence on the probability of opening and closing of the gate. This largely unexplored confined phase transition is known to cause low frequency noise in solid-state nanopores used for DNA sequencing and sensing, limiting their applicability. In biological channels, hydrophobic gating might conspire in determining the high selectivity towards a specific ions or molecules, a characteristic which is sought for in biosensors.
The objective of HyGate is to unravel the fundamental mechanisms of hydrophobic gating in model nanopores and biological ion channels and exploit their understanding in order to design biosensors with lower noise and higher selectivity. In order to achieve this ambitious goal, I will deploy the one-of-a-kind simulation and theoretical tools I developed to study vapor nucleation in extreme confinement, which comprises rare-event molecular dynamics and confined nucleation theory. These quantitative tools will be instrumental in designing better biosensors and nanodevices which avoid the formation of nanobubbles or exploit them to achieve exquisite species selectivity. The novel physical insights into the behavior of water in complex nanoconfined environments are expected to inspire radically innovative strategies for nanopore sensing and nanofluidic circuits and to promote a stepwise advancement in the fundamental understanding of hydrophobic gating mechanisms and their influence on bio-electrical cell response.
Max ERC Funding
1 496 250 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym LINCE
Project Light INduced Cell control by Exogenous organic semiconductors
Researcher (PI) Maria Rosa ANTOGNAZZA
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary LINCE will develop light-sensitive devices based on organic semiconductors (OS) for optical regulation of living cells functions.
The possibility to control the activity of biological systems is a timeless mission for neuroscientists, since it allows both to understand specific functions and to manage dysfunctions. Optical modulation provides, respect to traditional electrical methods, unprecedented spatio-temporal resolution, lower invasiveness, and higher selectivity. However, the vast majority of animal cells does not bear specific sensitivity to light. Search for new materials capable to optically regulate cell activity is thus an extremely hot topic. OS are ideal candidates, since they are inherently sensitive to visible light and highly biocompatible, sustain both ionic and electronic conduction, can be functionalized with biomolecules and drugs. Recently, it was reported that polymer-mediated optical excitation efficiently modulates the neuronal electrical activity.
LINCE will significantly broaden the application of OS to address key, open issues of high biological relevance, in both neuroscience and regenerative medicine. In particular, it will develop new devices for: (i) regulation of astrocytes functions, active in many fundamental processes of the central nervous system and in pathological disorders; (ii) control of stem cell differentiation and tissue regeneration; (iii) control of animal behavior, to first assess device biocompatibility and efficacy in vivo. LINCE tools will be sensitive to visible and NIR light, flexible, biocompatible, and easily integrated with any standard physiology set-up. They will combine electrical, chemical and thermal stimuli, offering high spatio-temporal resolution, reversibility, specificity and yield. The combination of all these features is not achievable by current technologies. Overall, LINCE will provide neuroscientists and medical doctors with an unprecedented tool-box for in vitro and in vivo investigations.
Summary
LINCE will develop light-sensitive devices based on organic semiconductors (OS) for optical regulation of living cells functions.
The possibility to control the activity of biological systems is a timeless mission for neuroscientists, since it allows both to understand specific functions and to manage dysfunctions. Optical modulation provides, respect to traditional electrical methods, unprecedented spatio-temporal resolution, lower invasiveness, and higher selectivity. However, the vast majority of animal cells does not bear specific sensitivity to light. Search for new materials capable to optically regulate cell activity is thus an extremely hot topic. OS are ideal candidates, since they are inherently sensitive to visible light and highly biocompatible, sustain both ionic and electronic conduction, can be functionalized with biomolecules and drugs. Recently, it was reported that polymer-mediated optical excitation efficiently modulates the neuronal electrical activity.
LINCE will significantly broaden the application of OS to address key, open issues of high biological relevance, in both neuroscience and regenerative medicine. In particular, it will develop new devices for: (i) regulation of astrocytes functions, active in many fundamental processes of the central nervous system and in pathological disorders; (ii) control of stem cell differentiation and tissue regeneration; (iii) control of animal behavior, to first assess device biocompatibility and efficacy in vivo. LINCE tools will be sensitive to visible and NIR light, flexible, biocompatible, and easily integrated with any standard physiology set-up. They will combine electrical, chemical and thermal stimuli, offering high spatio-temporal resolution, reversibility, specificity and yield. The combination of all these features is not achievable by current technologies. Overall, LINCE will provide neuroscientists and medical doctors with an unprecedented tool-box for in vitro and in vivo investigations.
Max ERC Funding
1 866 250 €
Duration
Start date: 2019-03-01, End date: 2024-02-29