Project acronym BrightEyes
Project Multi-Parameter Live-Cell Observation of Biomolecular Processes with Single-Photon Detector Array
Researcher (PI) Giuseppe Vicidomini
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Summary
Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Max ERC Funding
1 861 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym Browsec
Project Foundations and Tools for Client-Side Web Security
Researcher (PI) Matteo MAFFEI
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary The constantly increasing number of attacks on web applications shows how their rapid development has not been accompanied by adequate security foundations and demonstrates the lack of solid security enforcement tools. Indeed, web applications expose a gigantic attack surface, which hinders a rigorous understanding and enforcement of security properties. Hence, despite the worthwhile efforts to design secure web applications, users for a while will be confronted with vulnerable, or maliciously crafted, code. Unfortunately, end users have no way at present to reliably protect themselves from malicious applications.
BROWSEC will develop a holistic approach to client-side web security, laying its theoretical foundations and developing innovative security enforcement technologies. In particular, BROWSEC will deliver the first client-side tool to secure web applications that is practical, in that it is implemented as an extension and can thus be easily deployed at large, and also provably sound, i.e., backed up by machine-checked proofs that the tool provides end users with the required security guarantees. At the core of the proposal lies a novel monitoring technique, which treats the browser as a blackbox and intercepts its inputs and outputs in order to prevent dangerous information flows. With this lightweight monitoring approach, we aim at enforcing strong security properties without requiring any expensive and, given the dynamic nature of web applications, statically infeasible program analysis.
BROWSEC is thus a multidisciplinary research effort, promising practical impact and delivering breakthrough advancements in various disciplines, such as web security, JavaScript semantics, software engineering, and program verification.
Summary
The constantly increasing number of attacks on web applications shows how their rapid development has not been accompanied by adequate security foundations and demonstrates the lack of solid security enforcement tools. Indeed, web applications expose a gigantic attack surface, which hinders a rigorous understanding and enforcement of security properties. Hence, despite the worthwhile efforts to design secure web applications, users for a while will be confronted with vulnerable, or maliciously crafted, code. Unfortunately, end users have no way at present to reliably protect themselves from malicious applications.
BROWSEC will develop a holistic approach to client-side web security, laying its theoretical foundations and developing innovative security enforcement technologies. In particular, BROWSEC will deliver the first client-side tool to secure web applications that is practical, in that it is implemented as an extension and can thus be easily deployed at large, and also provably sound, i.e., backed up by machine-checked proofs that the tool provides end users with the required security guarantees. At the core of the proposal lies a novel monitoring technique, which treats the browser as a blackbox and intercepts its inputs and outputs in order to prevent dangerous information flows. With this lightweight monitoring approach, we aim at enforcing strong security properties without requiring any expensive and, given the dynamic nature of web applications, statically infeasible program analysis.
BROWSEC is thus a multidisciplinary research effort, promising practical impact and delivering breakthrough advancements in various disciplines, such as web security, JavaScript semantics, software engineering, and program verification.
Max ERC Funding
1 990 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CA2PVM
Project Multi-field and multi-scale Computational Approach to design and durability of PhotoVoltaic Modules
Researcher (PI) Marco Paggi
Host Institution (HI) SCUOLA IMT (ISTITUZIONI, MERCATI, TECNOLOGIE) ALTI STUDI DI LUCCA
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Photovoltaics (PV) based on Silicon (Si) semiconductors is one the most growing technology in the World for renewable, sustainable, non-polluting, widely available clean energy sources. Theoretical and applied research aims at increasing the conversion efficiency of PV modules and their lifetime. The Si crystalline microstructure has an important role on both issues. Grain boundaries introduce additional resistance and reduce the conversion efficiency. Moreover, they are prone to microcracking, thus influencing the lifetime. At present, the existing standard qualification tests are not sufficient to provide a quantitative definition of lifetime, since all the possible failure mechanisms are not accounted for. In this proposal, an innovative computational approach to design and durability assessment of PV modules is put forward. The aim is to complement real tests by virtual (numerical) simulations. To achieve a predictive stage, a challenging multi-field (multi-physics) computational approach is proposed, coupling the nonlinear elastic field, the thermal field and the electric field. To model real PV modules, an adaptive multi-scale and multi-field strategy will be proposed by introducing error indicators based on the gradients of the involved fields. This numerical approach will be applied to determine the upper bound to the probability of failure of the system. This statistical assessment will involve an optimization analysis that will be efficiently handled by a Mathematica-based hybrid symbolic-numerical framework. Standard and non-standard experimental testing on Si cells and PV modules will also be performed to complement and validate the numerical approach. The new methodology based on the challenging integration of advanced physical and mathematical modelling, innovative computational methods and non-standard experimental techniques is expected to have a significant impact on the design, qualification and lifetime assessment of complex PV systems."
Summary
"Photovoltaics (PV) based on Silicon (Si) semiconductors is one the most growing technology in the World for renewable, sustainable, non-polluting, widely available clean energy sources. Theoretical and applied research aims at increasing the conversion efficiency of PV modules and their lifetime. The Si crystalline microstructure has an important role on both issues. Grain boundaries introduce additional resistance and reduce the conversion efficiency. Moreover, they are prone to microcracking, thus influencing the lifetime. At present, the existing standard qualification tests are not sufficient to provide a quantitative definition of lifetime, since all the possible failure mechanisms are not accounted for. In this proposal, an innovative computational approach to design and durability assessment of PV modules is put forward. The aim is to complement real tests by virtual (numerical) simulations. To achieve a predictive stage, a challenging multi-field (multi-physics) computational approach is proposed, coupling the nonlinear elastic field, the thermal field and the electric field. To model real PV modules, an adaptive multi-scale and multi-field strategy will be proposed by introducing error indicators based on the gradients of the involved fields. This numerical approach will be applied to determine the upper bound to the probability of failure of the system. This statistical assessment will involve an optimization analysis that will be efficiently handled by a Mathematica-based hybrid symbolic-numerical framework. Standard and non-standard experimental testing on Si cells and PV modules will also be performed to complement and validate the numerical approach. The new methodology based on the challenging integration of advanced physical and mathematical modelling, innovative computational methods and non-standard experimental techniques is expected to have a significant impact on the design, qualification and lifetime assessment of complex PV systems."
Max ERC Funding
1 483 980 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym CAPABLE
Project Composite integrated photonic platform by femtosecond laser micromachining
Researcher (PI) Roberto OSELLAME
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary The quantum technology revolution promises a transformational impact on the society and economics worldwide. It will enable breakthrough advancements in such diverse fields as secure communications, computing, metrology, and imaging. Quantum photonics, which recently received an incredible boost by the use of integrated optical circuits, is an excellent technological platform to enable such revolution, as it already plays a relevant role in many of the above applications. However, some major technical roadblocks needs to be overcome. Currently, the various components required for a complete quantum photonic system are produced on very different materials by dedicated fabrication technologies, as no single material is able to fulfil all the requirements for single-photon generation, manipulation, storage and detection. This project proposes a new hybrid approach for integrated quantum photonic systems based on femtosecond laser microfabrication (FLM), enabling the innovative miniaturization of various components on different materials, but with a single tool and with very favourable integration capabilities.
This project will mainly focus on two major breakthroughs: the first one will be increasing the complexity achievable in the photonic platform and demonstrating unprecedented quantum computation capability; the second one will be the integration in the platform of multiple single-photon quantum memories and their interconnection.
Achievement of these goals will only be possible by taking full advantage of the unique features of FLM, from the possibility to machine very different materials, to the 3D capabilities in waveguide writing and selective material removal.
The successful demonstration and functional validation of this hybrid, integrated photonic platform will represent a significant leap for photonic microsystems in quantum computing and quantum communications.
Summary
The quantum technology revolution promises a transformational impact on the society and economics worldwide. It will enable breakthrough advancements in such diverse fields as secure communications, computing, metrology, and imaging. Quantum photonics, which recently received an incredible boost by the use of integrated optical circuits, is an excellent technological platform to enable such revolution, as it already plays a relevant role in many of the above applications. However, some major technical roadblocks needs to be overcome. Currently, the various components required for a complete quantum photonic system are produced on very different materials by dedicated fabrication technologies, as no single material is able to fulfil all the requirements for single-photon generation, manipulation, storage and detection. This project proposes a new hybrid approach for integrated quantum photonic systems based on femtosecond laser microfabrication (FLM), enabling the innovative miniaturization of various components on different materials, but with a single tool and with very favourable integration capabilities.
This project will mainly focus on two major breakthroughs: the first one will be increasing the complexity achievable in the photonic platform and demonstrating unprecedented quantum computation capability; the second one will be the integration in the platform of multiple single-photon quantum memories and their interconnection.
Achievement of these goals will only be possible by taking full advantage of the unique features of FLM, from the possibility to machine very different materials, to the 3D capabilities in waveguide writing and selective material removal.
The successful demonstration and functional validation of this hybrid, integrated photonic platform will represent a significant leap for photonic microsystems in quantum computing and quantum communications.
Max ERC Funding
2 381 875 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CARBONANOBRIDGE
Project Neuron Networking with Nano Bridges via the Synthesis and Integration of Functionalized Carbon Nanotubes
Researcher (PI) Maurizio Prato
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRIESTE
Call Details Advanced Grant (AdG), PE5, ERC-2008-AdG
Summary We propose the development of novel nanodevices, such as nanoscale bridges and nanovectors, based on functionalized carbon nanotubes (CNT) for manipulating neurons and neuronal network activity in vitro. The main aim is to put forward innovative solutions that have the potential to circumvent the problems currently faced by spinal cord lesions or by neurodegenerative diseases. The unifying theme is to use recent advances in chemistry and nanotechnology to gain insight into the functioning of hybrid neuronal/CNT networks, relevant for the development of novel implantable devices to control neuronal signaling and improve synapse formation in a controlled fashion. The proposal s core strategy is to exploit the expertise of the PI in the chemical control of CNT properties to develop devices reaching various degrees of functional integration with the physiological electrical activity of cells and their networks, and to understand how such global dynamics are orchestrated when integrated by different substrates. An unconventional strategy will be represented by the electrical characterization of micro and nano patterned substrates by AFM and conductive tip AFM, both before and after neurons have grown on the substrates. We will also use the capability of AFM to identify critical positions in the neuronal network, while delivering time-dependent chemical stimulations. We will apply nanotechnology to contemporary neuroscience in the perspective of novel neuro-implantable devices and drug nanovectors, engineered to treat neurological and neurodegenerative lesions. The scientific strategy at the core of the proposal is the convergence between nanotechnology, chemistry and neurobiology. Such convergence, beyond helping understand the functioning and malfunctioning of the brain, can stimulate further research in this area and may ultimately lead to a new generation of nanomedicine applications in neurology and to new opportunities for the health care industry.
Summary
We propose the development of novel nanodevices, such as nanoscale bridges and nanovectors, based on functionalized carbon nanotubes (CNT) for manipulating neurons and neuronal network activity in vitro. The main aim is to put forward innovative solutions that have the potential to circumvent the problems currently faced by spinal cord lesions or by neurodegenerative diseases. The unifying theme is to use recent advances in chemistry and nanotechnology to gain insight into the functioning of hybrid neuronal/CNT networks, relevant for the development of novel implantable devices to control neuronal signaling and improve synapse formation in a controlled fashion. The proposal s core strategy is to exploit the expertise of the PI in the chemical control of CNT properties to develop devices reaching various degrees of functional integration with the physiological electrical activity of cells and their networks, and to understand how such global dynamics are orchestrated when integrated by different substrates. An unconventional strategy will be represented by the electrical characterization of micro and nano patterned substrates by AFM and conductive tip AFM, both before and after neurons have grown on the substrates. We will also use the capability of AFM to identify critical positions in the neuronal network, while delivering time-dependent chemical stimulations. We will apply nanotechnology to contemporary neuroscience in the perspective of novel neuro-implantable devices and drug nanovectors, engineered to treat neurological and neurodegenerative lesions. The scientific strategy at the core of the proposal is the convergence between nanotechnology, chemistry and neurobiology. Such convergence, beyond helping understand the functioning and malfunctioning of the brain, can stimulate further research in this area and may ultimately lead to a new generation of nanomedicine applications in neurology and to new opportunities for the health care industry.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym CAVE
Project Challenges and Advancements in Virtual Elements
Researcher (PI) Lourenco Beirao da veiga
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Summary
The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Max ERC Funding
980 634 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CC4SOL
Project Towards chemical accuracy in computational materials science
Researcher (PI) Andreas GRÜNEIS
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Summary
This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Max ERC Funding
1 460 826 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym CeraText
Project Tailoring Microstructure and Architecture to Build Ceramic Components with Unprecedented Damage Tolerance
Researcher (PI) Raul BERMEJO
Host Institution (HI) MONTANUNIVERSITAET LEOBEN
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Advanced ceramics are often combined with metals, polymers or other ceramics to produce structural and functional systems with exceptional properties. Examples are resistors and capacitors in microelectronics, piezo-ceramic actuators in car injection devices, and bio-implants for hip joint replacements. However, a critical issue affecting the functionality, lifetime and reliability of such systems is the initiation and uncontrolled propagation of cracks in the brittle ceramic parts, yielding in some cases rejection rates up to 70% of components production.
The remarkable “damage tolerance” found in natural materials such as wood, bone or mollusc, has yet to be achieved in technical ceramics, where incipient damage is synonymous with catastrophic failure. Novel “multilayer designs” combining microstructure and architecture could change this situation. Recent work of the PI has shown that tuning the location of “protective” layers within a 3D multilayer ceramic can increase its fracture resistance by five times (from ~3.5 to ~17 MPa∙m1/2) relative to constituent bulk ceramic layers, while retaining high strength (~500 MPa). By orienting the grain structure, similar to the textured and organized microstructure found in natural systems such as nacre, the PI has shown that crack propagation can be controlled within the textured ceramic layer. Thus, I believe tailored microstructures with controlled grain boundaries engineered in a layer-by-layer 3D architectural design hold the key to a new generation of “damage tolerant” ceramics.
This proposal outlines a research program to establish new scientific principles for the fabrication of innovative ceramic components that exhibit unprecedented damage tolerance. The successful implementation of microstructural features (e.g. texture degree, tailored internal stresses, second phases, interfaces) in a layer-by-layer architecture will provide outstanding lifetime and reliability in both structural and functional ceramic devices.
Summary
Advanced ceramics are often combined with metals, polymers or other ceramics to produce structural and functional systems with exceptional properties. Examples are resistors and capacitors in microelectronics, piezo-ceramic actuators in car injection devices, and bio-implants for hip joint replacements. However, a critical issue affecting the functionality, lifetime and reliability of such systems is the initiation and uncontrolled propagation of cracks in the brittle ceramic parts, yielding in some cases rejection rates up to 70% of components production.
The remarkable “damage tolerance” found in natural materials such as wood, bone or mollusc, has yet to be achieved in technical ceramics, where incipient damage is synonymous with catastrophic failure. Novel “multilayer designs” combining microstructure and architecture could change this situation. Recent work of the PI has shown that tuning the location of “protective” layers within a 3D multilayer ceramic can increase its fracture resistance by five times (from ~3.5 to ~17 MPa∙m1/2) relative to constituent bulk ceramic layers, while retaining high strength (~500 MPa). By orienting the grain structure, similar to the textured and organized microstructure found in natural systems such as nacre, the PI has shown that crack propagation can be controlled within the textured ceramic layer. Thus, I believe tailored microstructures with controlled grain boundaries engineered in a layer-by-layer 3D architectural design hold the key to a new generation of “damage tolerant” ceramics.
This proposal outlines a research program to establish new scientific principles for the fabrication of innovative ceramic components that exhibit unprecedented damage tolerance. The successful implementation of microstructural features (e.g. texture degree, tailored internal stresses, second phases, interfaces) in a layer-by-layer architecture will provide outstanding lifetime and reliability in both structural and functional ceramic devices.
Max ERC Funding
1 985 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CHRONOS
Project A geochemical clock to measure timescales of volcanic eruptions
Researcher (PI) Diego Perugini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary "The eruption of volcanoes appears one of the most unpredictable phenomena on Earth. Yet the situation is rapidly changing. Quantification of the eruptive record constrains what is possible in a given volcanic system. Timing is the hardest part to quantify.
The main process triggering an eruption is the refilling of a sub-volcanic magma chamber by a new magma coming from depth. This process results in magma mixing and provokes a time-dependent diffusion of chemical elements. Understanding the time elapsed from mixing to eruption is fundamental to discerning pre-eruptive behaviour of volcanoes to mitigate the huge impact of volcanic eruptions on society and the environment.
The CHRONOS project proposes a new method that will cut the Gordian knot of the presently intractable problem of volcanic eruption timing using a surgical approach integrating textural, geochemical and experimental data on magma mixing. I will use the compositional heterogeneity frozen in time in the rocks the same way a broken clock at a crime scene is used to determine the time of the incident. CHRONOS will aim to:
1) be the first study to reproduce magma mixing, by performing unique experiments constrained by natural data and using natural melts, under controlled rheological and fluid-dynamics conditions;
2) obtain unprecedented high-quality data on the time dependence of chemical exchanges during magma mixing;
3) derive empirical relationships linking the extent of chemical exchanges and the mixing timescales;
4) determine timescales of volcanic eruptions combining natural and experimental data.
CHRONOS will open a new window on the physico-chemical processes occurring in the days preceding volcanic eruptions providing unprecedented information to build the first inventory of eruption timescales for planet Earth. If these timescales can be linked with geophysical signals occurring prior to eruptions, this inventory will have an immense value, enabling precise prediction of volcanic eruptions."
Summary
"The eruption of volcanoes appears one of the most unpredictable phenomena on Earth. Yet the situation is rapidly changing. Quantification of the eruptive record constrains what is possible in a given volcanic system. Timing is the hardest part to quantify.
The main process triggering an eruption is the refilling of a sub-volcanic magma chamber by a new magma coming from depth. This process results in magma mixing and provokes a time-dependent diffusion of chemical elements. Understanding the time elapsed from mixing to eruption is fundamental to discerning pre-eruptive behaviour of volcanoes to mitigate the huge impact of volcanic eruptions on society and the environment.
The CHRONOS project proposes a new method that will cut the Gordian knot of the presently intractable problem of volcanic eruption timing using a surgical approach integrating textural, geochemical and experimental data on magma mixing. I will use the compositional heterogeneity frozen in time in the rocks the same way a broken clock at a crime scene is used to determine the time of the incident. CHRONOS will aim to:
1) be the first study to reproduce magma mixing, by performing unique experiments constrained by natural data and using natural melts, under controlled rheological and fluid-dynamics conditions;
2) obtain unprecedented high-quality data on the time dependence of chemical exchanges during magma mixing;
3) derive empirical relationships linking the extent of chemical exchanges and the mixing timescales;
4) determine timescales of volcanic eruptions combining natural and experimental data.
CHRONOS will open a new window on the physico-chemical processes occurring in the days preceding volcanic eruptions providing unprecedented information to build the first inventory of eruption timescales for planet Earth. If these timescales can be linked with geophysical signals occurring prior to eruptions, this inventory will have an immense value, enabling precise prediction of volcanic eruptions."
Max ERC Funding
1 993 813 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym CITRES
Project Chemistry and interface tailored lead-free relaxor thin films for energy storage capacitors
Researcher (PI) Marco Deluca
Host Institution (HI) MATERIALS CENTER LEOBEN FORSCHUNG GMBH
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary The goal of CITRES is to provide new energy storage devices with high power and energy density by developing novel multilayer ceramic capacitors (MLCCs) based on relaxor thin films (RTF).
Energy storage units for energy autonomous sensor systems for the Internet of Things (IoT) must possess high power and energy density to allow quick charge/recharge and long-time energy supply. Current energy storage devices cannot meet those demands: Batteries have large capacity but long charging/discharging times due to slow chemical reactions and ion diffusion. Ceramic dielectric capacitors – being based on ionic and electronic polarisation mechanisms – can deliver and take up power quickly, but store much less energy due to low dielectric breakdown strength (DBS), high losses, and leakage currents.
RTF are ideal candidates: (i) Thin film processing allows obtaining low porosity and defects, thus enhancing the DBS; (ii) slim polarisation hysteresis loops, intrinsic to relaxors, allow reducing the losses. High energy density can be achieved in RTF by maximising the polarisation and minimising the leakage currents. Both aspects are controlled by the amount, type and local distribution of chemical substituents in the RTF lattice, whereas the latter depends also on the chemistry of the electrode metal.
In CITRES, we will identify the influence of substituents on electric polarisation from atomic to macroscopic scale by combining multiscale atomistic modelling with advanced structural, chemical and electrical characterizations on several length scales both in the RTF bulk and at interfaces with various electrodes. This will allow for the first time the design of energy storage properties of RTF by chemical substitution and electrode selection.
The ground-breaking nature of CITRES resides in the design and realisation of RTF-based dielectric MLCCs with better energy storage performances than supercapacitors and batteries, thus enabling energy autonomy for IoT sensor systems.
Summary
The goal of CITRES is to provide new energy storage devices with high power and energy density by developing novel multilayer ceramic capacitors (MLCCs) based on relaxor thin films (RTF).
Energy storage units for energy autonomous sensor systems for the Internet of Things (IoT) must possess high power and energy density to allow quick charge/recharge and long-time energy supply. Current energy storage devices cannot meet those demands: Batteries have large capacity but long charging/discharging times due to slow chemical reactions and ion diffusion. Ceramic dielectric capacitors – being based on ionic and electronic polarisation mechanisms – can deliver and take up power quickly, but store much less energy due to low dielectric breakdown strength (DBS), high losses, and leakage currents.
RTF are ideal candidates: (i) Thin film processing allows obtaining low porosity and defects, thus enhancing the DBS; (ii) slim polarisation hysteresis loops, intrinsic to relaxors, allow reducing the losses. High energy density can be achieved in RTF by maximising the polarisation and minimising the leakage currents. Both aspects are controlled by the amount, type and local distribution of chemical substituents in the RTF lattice, whereas the latter depends also on the chemistry of the electrode metal.
In CITRES, we will identify the influence of substituents on electric polarisation from atomic to macroscopic scale by combining multiscale atomistic modelling with advanced structural, chemical and electrical characterizations on several length scales both in the RTF bulk and at interfaces with various electrodes. This will allow for the first time the design of energy storage properties of RTF by chemical substitution and electrode selection.
The ground-breaking nature of CITRES resides in the design and realisation of RTF-based dielectric MLCCs with better energy storage performances than supercapacitors and batteries, thus enabling energy autonomy for IoT sensor systems.
Max ERC Funding
1 996 519 €
Duration
Start date: 2019-04-01, End date: 2024-03-31