Project acronym BeyondtheElite
Project Beyond the Elite: Jewish Daily Life in Medieval Europe
Researcher (PI) Elisheva Baumgarten
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Summary
The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Max ERC Funding
1 941 688 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BNYQ
Project Breaking the Nyquist Barrier: A New Paradigm in Data Conversion and Transmission
Researcher (PI) Yonina Eldar
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Summary
Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Max ERC Funding
2 400 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym CloudRadioNet
Project Cloud Wireless Networks: An Information Theoretic Framework
Researcher (PI) Shlomo Shamai Shitz
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Summary
This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Max ERC Funding
1 981 782 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym DIASPORAINTRANSITION
Project A Diaspora in Transition - Cultural and Religious Changes in Western Sephardic Communities in the Early Modern Period
Researcher (PI) Yosef Mauricio Kaplan
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), SH6, ERC-2011-ADG_20110406
Summary The communities of the Western Sephardic Diaspora were founded in the 16th and 17th centuries by New Christians from Iberia who returned to Judaism that had been abandoned by their ancestors in the late Middle Ages. This project will concentrate on the changes in the religious conceptions and behavior as well as the cultural patterns of the communities of Amsterdam, Hamburg, Leghorn, London, and Bordeaux. We will analyze the vigorous activity of their leaders to set the boundaries of their new religious identity in comparison to the policy of several Christian “communities of belief,” which went into exile following religious persecution in their homelands. We will also examine the changes in the attitude toward Judaism during the 17th century in certain segments of the Sephardic Diaspora: rather than a normative system covering every area of life, Judaism came to be seen as a system of faith restricted to the religious sphere. We will seek to explain the extent to which this significant change influenced their institutions and social behaviour. This study will provide us with better understanding of the place of the Jews in European society. At the same time, we will subject a central series of concepts in the historiographical discourse of the Early Modern Period to critical analysis: confessionalization, disciplinary revolution, civilizing process, affective individualism, etc. This phase of the research will be based on qualitative and quantitative analysis of many hundreds of documents, texts and the material remains of these communities. Using sociological and anthropological models, we will analyze ceremonies and rituals described at length in the sources, the social and cultural meaning of the architecture of the Sephardic synagogues of that time, and of other visual symbols.
Summary
The communities of the Western Sephardic Diaspora were founded in the 16th and 17th centuries by New Christians from Iberia who returned to Judaism that had been abandoned by their ancestors in the late Middle Ages. This project will concentrate on the changes in the religious conceptions and behavior as well as the cultural patterns of the communities of Amsterdam, Hamburg, Leghorn, London, and Bordeaux. We will analyze the vigorous activity of their leaders to set the boundaries of their new religious identity in comparison to the policy of several Christian “communities of belief,” which went into exile following religious persecution in their homelands. We will also examine the changes in the attitude toward Judaism during the 17th century in certain segments of the Sephardic Diaspora: rather than a normative system covering every area of life, Judaism came to be seen as a system of faith restricted to the religious sphere. We will seek to explain the extent to which this significant change influenced their institutions and social behaviour. This study will provide us with better understanding of the place of the Jews in European society. At the same time, we will subject a central series of concepts in the historiographical discourse of the Early Modern Period to critical analysis: confessionalization, disciplinary revolution, civilizing process, affective individualism, etc. This phase of the research will be based on qualitative and quantitative analysis of many hundreds of documents, texts and the material remains of these communities. Using sociological and anthropological models, we will analyze ceremonies and rituals described at length in the sources, the social and cultural meaning of the architecture of the Sephardic synagogues of that time, and of other visual symbols.
Max ERC Funding
1 671 200 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym DIRECTEDINFO
Project Investigating Directed Information
Researcher (PI) Haim Permuter
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary This research investigates a new measure that arises in information theory
called directed information. Recent advances, including our preliminary results, shows that
directed information arises in communication as the maximum rate that can be transmitted reliably
in channels with feedback. The directed information is multi-letter expression and therefore very
hard to optimize or compute.
Our plan is first of all to find an efficient methodology for optimizing the measure using the
dynamic programming framework and convex optimization tools. As an important by-product of
finding the fundamental limits is finding coding schemes that achieves the limits. Second, we
plan to find new roles for directed information in communication, especially in networks with
bi-directional communication and in data compression with causal conditions. Third, encouraged by
a preliminary work on interpretation of directed information in economics and estimation theory,
we plan to show that directed information has interpretation in additional fields such as
statistical physics. We plan to show that there is duality relation between different fields with
causal constraints. Due to the duality insights and breakthroughs in one problem will lead to new
insights in other problems. Finally, we will apply directed information as a statistical
inference of causal dependence. We will show how to estimate and use the directed information
estimator to measure causal inference between two or more process. In particular, one of the
questions we plan to answer is the influence of industrial activities (e.g., $\text{CO}_2$
volumes) on the global warming.
Our main focus will be to develop a deeper understanding of the mathematical properties of
directed information, a process that is instrumental to each problem. Due to their theoretical
proximity and their interdisciplinary nature, progress in one problem will lead to new insights
in other problems. A common set of mathematical tools developed in
Summary
This research investigates a new measure that arises in information theory
called directed information. Recent advances, including our preliminary results, shows that
directed information arises in communication as the maximum rate that can be transmitted reliably
in channels with feedback. The directed information is multi-letter expression and therefore very
hard to optimize or compute.
Our plan is first of all to find an efficient methodology for optimizing the measure using the
dynamic programming framework and convex optimization tools. As an important by-product of
finding the fundamental limits is finding coding schemes that achieves the limits. Second, we
plan to find new roles for directed information in communication, especially in networks with
bi-directional communication and in data compression with causal conditions. Third, encouraged by
a preliminary work on interpretation of directed information in economics and estimation theory,
we plan to show that directed information has interpretation in additional fields such as
statistical physics. We plan to show that there is duality relation between different fields with
causal constraints. Due to the duality insights and breakthroughs in one problem will lead to new
insights in other problems. Finally, we will apply directed information as a statistical
inference of causal dependence. We will show how to estimate and use the directed information
estimator to measure causal inference between two or more process. In particular, one of the
questions we plan to answer is the influence of industrial activities (e.g., $\text{CO}_2$
volumes) on the global warming.
Our main focus will be to develop a deeper understanding of the mathematical properties of
directed information, a process that is instrumental to each problem. Due to their theoretical
proximity and their interdisciplinary nature, progress in one problem will lead to new insights
in other problems. A common set of mathematical tools developed in
Max ERC Funding
1 224 600 €
Duration
Start date: 2013-08-01, End date: 2019-07-31
Project acronym DPI
Project Deep Packet Inspection to Next Generation Network Devices
Researcher (PI) Anat Bremler-Barr
Host Institution (HI) INTERDISCIPLINARY CENTER (IDC) HERZLIYA
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Deep packet inspection (DPI) lies at the core of contemporary Network Intrusion Detection/Prevention Systems and Web Application Firewall. DPI aims to identify various malware (including spam and viruses), by inspecting both the header and the payload of each packet and comparing it to a known set of patterns. DPI are often performed on the critical path of the packet processing, thus the overall performance of the security tools is dominated by the speed of DPI.
Traditionally, DPI considered only exact string patterns. However, in modern network devices patterns are often represented by regular expressions due to their superior expressiveness. Matching both exact string and regular expressions are well-studied area in Computer Science; however all well-known solutions are not sufficient for current network demands: First, current solutions do not scale in terms of speed, memory and power requirements. While current network devices work at 10-100 Gbps and have thousands of patterns, traditional solutions suffer from exponential memory size or exponential time and induce prohibitive power consumption. Second, non clear-text traffic, such as compressed traffic, becomes a dominant portion of the Internet and is clearly harder to inspect.
In this research we design new algorithms and schemes that cope with today demand. This is evolving area both in the Academia and Industry, where currently there is no adequate solution.
We intend to use recent advances in hardware to cope with these demanding requirements. More specifically, we plan to use Ternary Content-Addressable Memories (TCAMs), which become standard commodity in contemporary network devices. TCAMs can compare a key against all rules in a memory in parallel and thus provide high throughput. We believ
Summary
Deep packet inspection (DPI) lies at the core of contemporary Network Intrusion Detection/Prevention Systems and Web Application Firewall. DPI aims to identify various malware (including spam and viruses), by inspecting both the header and the payload of each packet and comparing it to a known set of patterns. DPI are often performed on the critical path of the packet processing, thus the overall performance of the security tools is dominated by the speed of DPI.
Traditionally, DPI considered only exact string patterns. However, in modern network devices patterns are often represented by regular expressions due to their superior expressiveness. Matching both exact string and regular expressions are well-studied area in Computer Science; however all well-known solutions are not sufficient for current network demands: First, current solutions do not scale in terms of speed, memory and power requirements. While current network devices work at 10-100 Gbps and have thousands of patterns, traditional solutions suffer from exponential memory size or exponential time and induce prohibitive power consumption. Second, non clear-text traffic, such as compressed traffic, becomes a dominant portion of the Internet and is clearly harder to inspect.
In this research we design new algorithms and schemes that cope with today demand. This is evolving area both in the Academia and Industry, where currently there is no adequate solution.
We intend to use recent advances in hardware to cope with these demanding requirements. More specifically, we plan to use Ternary Content-Addressable Memories (TCAMs), which become standard commodity in contemporary network devices. TCAMs can compare a key against all rules in a memory in parallel and thus provide high throughput. We believ
Max ERC Funding
990 400 €
Duration
Start date: 2010-11-01, End date: 2016-10-31
Project acronym DYNA-MIC
Project Deep non-invasive imaging via scattered-light acoustically-mediated computational microscopy
Researcher (PI) Ori Katz
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary Optical microscopy, perhaps the most important tool in biomedical investigation and clinical diagnostics, is currently held back by the assumption that it is not possible to noninvasively image microscopic structures more than a fraction of a millimeter deep inside tissue. The governing paradigm is that high-resolution information carried by light is lost due to random scattering in complex samples such as tissue. While non-optical imaging techniques, employing non-ionizing radiation such as ultrasound, allow deeper investigations, they possess drastically inferior resolution and do not permit microscopic studies of cellular structures, crucial for accurate diagnosis of cancer and other diseases.
I propose a new kind of microscope, one that can peer deep inside visually opaque samples, combining the sub-micron resolution of light with the penetration depth of ultrasound. My novel approach is based on our discovery that information on microscopic structures is contained in random scattered-light patterns. It breaks current limits by exploiting the randomness of scattered light rather than struggling to fight it.
We will transform this concept into a breakthrough imaging platform by combining ultrasonic probing and modulation of light with advanced digital signal processing algorithms, extracting the hidden microscopic structure by two complementary approaches: 1) By exploiting the stochastic dynamics of scattered light using methods developed to surpass the diffraction limit in optical nanoscopy and for compressive sampling, harnessing nonlinear effects. 2) Through the analysis of intrinsic correlations in scattered light that persist deep inside scattering tissue.
This proposal is formed by bringing together novel insights on the physics of light in complex media, advanced microscopy techniques, and ultrasound-mediated imaging. It is made possible by the new ability to digitally process vast amounts of scattering data, and has the potential to impact many fields.
Summary
Optical microscopy, perhaps the most important tool in biomedical investigation and clinical diagnostics, is currently held back by the assumption that it is not possible to noninvasively image microscopic structures more than a fraction of a millimeter deep inside tissue. The governing paradigm is that high-resolution information carried by light is lost due to random scattering in complex samples such as tissue. While non-optical imaging techniques, employing non-ionizing radiation such as ultrasound, allow deeper investigations, they possess drastically inferior resolution and do not permit microscopic studies of cellular structures, crucial for accurate diagnosis of cancer and other diseases.
I propose a new kind of microscope, one that can peer deep inside visually opaque samples, combining the sub-micron resolution of light with the penetration depth of ultrasound. My novel approach is based on our discovery that information on microscopic structures is contained in random scattered-light patterns. It breaks current limits by exploiting the randomness of scattered light rather than struggling to fight it.
We will transform this concept into a breakthrough imaging platform by combining ultrasonic probing and modulation of light with advanced digital signal processing algorithms, extracting the hidden microscopic structure by two complementary approaches: 1) By exploiting the stochastic dynamics of scattered light using methods developed to surpass the diffraction limit in optical nanoscopy and for compressive sampling, harnessing nonlinear effects. 2) Through the analysis of intrinsic correlations in scattered light that persist deep inside scattering tissue.
This proposal is formed by bringing together novel insights on the physics of light in complex media, advanced microscopy techniques, and ultrasound-mediated imaging. It is made possible by the new ability to digitally process vast amounts of scattering data, and has the potential to impact many fields.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym FADER
Project Flight Algorithms for Disaggregated Space Architectures
Researcher (PI) Pinchas Pini Gurfil
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary Standard spacecraft designs comprise modules assembled in a single monolithic structure. When unexpected situations occur, the spacecraft are unable to adequately respond, and significant functional and financial losses are unavoidable. For instance, if the payload of a spacecraft fails, the whole system becomes unserviceable and substitution of the entire spacecraft is required. It would be much easier to replace the payload module only than launch a completely new satellite. This idea gives rise to an emerging concept in space engineering termed disaggregated spacecraft. Disaggregated space architectures (DSA) consist of several physically-separated modules, interacting through wireless communication links to form a single virtual platform. Each module has one or more pre-determined functions: Navigation, attitude control, power generation and payload operation. The free-flying modules, capable of resource sharing, do not have to operate in a tightly-controlled formation, but are rather required to remain in bounded relative position and attitude, termed cluster flying. DSA enables novel space system architectures, which are expected to be much more efficient, adaptable, robust and responsive. The main goal of the proposed research is to develop beyond the state-of-the-art technologies in order to enable operational flight of DSA, by (i) developing algorithms for semi-autonomous long-duration maintenance of a cluster and cluster network, capable of adding and removing spacecraft modules to/from the cluster and cluster network; (ii) finding methods so as to autonomously reconfigure the cluster to retain safety- and mission-critical functionality in the face of network degradation or component failures; (iii) designing semi-autonomous cluster scatter and re-gather maneuvesr to rapidly evade a debris-like threat; and (iv) validating the said algorithms and methods in the Distributed Space Systems Laboratory in which the PI serves as a Principal Investigator.
Summary
Standard spacecraft designs comprise modules assembled in a single monolithic structure. When unexpected situations occur, the spacecraft are unable to adequately respond, and significant functional and financial losses are unavoidable. For instance, if the payload of a spacecraft fails, the whole system becomes unserviceable and substitution of the entire spacecraft is required. It would be much easier to replace the payload module only than launch a completely new satellite. This idea gives rise to an emerging concept in space engineering termed disaggregated spacecraft. Disaggregated space architectures (DSA) consist of several physically-separated modules, interacting through wireless communication links to form a single virtual platform. Each module has one or more pre-determined functions: Navigation, attitude control, power generation and payload operation. The free-flying modules, capable of resource sharing, do not have to operate in a tightly-controlled formation, but are rather required to remain in bounded relative position and attitude, termed cluster flying. DSA enables novel space system architectures, which are expected to be much more efficient, adaptable, robust and responsive. The main goal of the proposed research is to develop beyond the state-of-the-art technologies in order to enable operational flight of DSA, by (i) developing algorithms for semi-autonomous long-duration maintenance of a cluster and cluster network, capable of adding and removing spacecraft modules to/from the cluster and cluster network; (ii) finding methods so as to autonomously reconfigure the cluster to retain safety- and mission-critical functionality in the face of network degradation or component failures; (iii) designing semi-autonomous cluster scatter and re-gather maneuvesr to rapidly evade a debris-like threat; and (iv) validating the said algorithms and methods in the Distributed Space Systems Laboratory in which the PI serves as a Principal Investigator.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym FAULT-ADAPTIVE
Project Fault-Adaptive Monitoring and Control of Complex Distributed Dynamical Systems
Researcher (PI) Marios Polycarpou
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Advanced Grant (AdG), PE7, ERC-2011-ADG_20110209
Summary "The emergence of networked embedded systems and sensor/actuator networks has facilitated the development of advanced monitoring and control applications, where a large amount of sensor data is collected and processed in real-time in order to activate the appropriate actuators and achieve the desired control objectives. However, in situations where a fault arises in some of the components (e.g., sensors, actuators, communication links), or an unexpected event occurs in the environment, this may lead to a serious degradation in performance or, even worse, to an overall system failure. There is a need to develop a systematic framework to enhance the reliability, fault-tolerance and sustainability of complex distributed dynamical systems through the use of fault-adaptive monitoring and control methods. The work proposed here will contribute to the development of such a framework with emphasis on applications related to critical infrastructure systems (e.g., power, water, telecommunications and transportation systems). It will provide an innovative approach based on the use of networked intelligent agent systems, where the state of the infrastructure is monitored and controlled by a network of sensors and actuators with cooperating agents for fault diagnosis and fault tolerant control. A hierarchical fault diagnosis architecture will be developed, with neighbouring fault diagnosis agents cooperating at a local level, while transmitting their information, as needed, to a regional monitoring agent, responsible for integrating in real-time local information into a large-scale “picture” of the health of the infrastructure. A key motivation is to exploit spatial and temporal correlations between measured variables using learning methods, and to develop the tools and design methodologies that will prevent relatively “small” faults or unexpected events from causing significant disruption or complete system failures in complex distributed dynamical systems."
Summary
"The emergence of networked embedded systems and sensor/actuator networks has facilitated the development of advanced monitoring and control applications, where a large amount of sensor data is collected and processed in real-time in order to activate the appropriate actuators and achieve the desired control objectives. However, in situations where a fault arises in some of the components (e.g., sensors, actuators, communication links), or an unexpected event occurs in the environment, this may lead to a serious degradation in performance or, even worse, to an overall system failure. There is a need to develop a systematic framework to enhance the reliability, fault-tolerance and sustainability of complex distributed dynamical systems through the use of fault-adaptive monitoring and control methods. The work proposed here will contribute to the development of such a framework with emphasis on applications related to critical infrastructure systems (e.g., power, water, telecommunications and transportation systems). It will provide an innovative approach based on the use of networked intelligent agent systems, where the state of the infrastructure is monitored and controlled by a network of sensors and actuators with cooperating agents for fault diagnosis and fault tolerant control. A hierarchical fault diagnosis architecture will be developed, with neighbouring fault diagnosis agents cooperating at a local level, while transmitting their information, as needed, to a regional monitoring agent, responsible for integrating in real-time local information into a large-scale “picture” of the health of the infrastructure. A key motivation is to exploit spatial and temporal correlations between measured variables using learning methods, and to develop the tools and design methodologies that will prevent relatively “small” faults or unexpected events from causing significant disruption or complete system failures in complex distributed dynamical systems."
Max ERC Funding
2 035 200 €
Duration
Start date: 2012-04-01, End date: 2018-03-31
Project acronym FDP-MBH
Project Fundamental dynamical processes near massive black holes in galactic nuclei
Researcher (PI) Tal Alexander
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE7, ERC-2007-StG
Summary "I propose to combine analytical studies and simulations to explore fundamental open questions in the dynamics and statistical mechanics of stars near massive black holes. These directly affect key issues such as the rate of supply of single and binary stars to the black hole, the growth and evolution of single and binary massive black holes and the connections to the evolution of the host galaxy, capture of stars around the black hole, the rate and modes of gravitational wave emission from captured compact objects, stellar tidal heating and destruction, and the emergence of ""exotic"" stellar populations around massive black holes. These processes have immediate observational implications and relevance in view of the huge amounts of data on massive black holes and galactic nuclei coming from earth-bound and space-borne telescopes, from across the electromagnetic spectrum, from cosmic rays, and in the near future also from neutrinos and gravitational waves."
Summary
"I propose to combine analytical studies and simulations to explore fundamental open questions in the dynamics and statistical mechanics of stars near massive black holes. These directly affect key issues such as the rate of supply of single and binary stars to the black hole, the growth and evolution of single and binary massive black holes and the connections to the evolution of the host galaxy, capture of stars around the black hole, the rate and modes of gravitational wave emission from captured compact objects, stellar tidal heating and destruction, and the emergence of ""exotic"" stellar populations around massive black holes. These processes have immediate observational implications and relevance in view of the huge amounts of data on massive black holes and galactic nuclei coming from earth-bound and space-borne telescopes, from across the electromagnetic spectrum, from cosmic rays, and in the near future also from neutrinos and gravitational waves."
Max ERC Funding
880 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31