Project acronym PPOLAH
Project Predicting Properties of Large Heterogeneous Systems with Optimally-Tuned Range-Separated Hybrid Functionals
Researcher (PI) Leeor Kronik
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary I propose to develop a broadly applicable, quantitatively reliable, computationally simple approach to the study of large heterogeneous systems, and to apply it to important problems in molecular and organic electronics and photovoltaics. This will be based on a radically different approach to the development and application of density functional theory (DFT) - determining an optimally yet non-empirically tuned system-specific functional, instead of seeking a universally applicable one.
Large heterogeneous systems are vital to several of the most burning challenges facing materials science. Perhaps most notably, this includes materials systems relevant for basic energy sciences, e.g., for photovoltaics or photocatalysis, but also includes, e.g., organic/inorganic interfaces that are crucial for molecular, organic, and hybrid organic/inorganic (opto)electronic systems. Theory and modelling of such systems face many challenges and would benefit greatly from accurate first principles calculations. However, the “work-horse” of such large-scale calculations – DFT – faces multiple, serious challenges when applied to such systems. This includes treating systems with components of different chemical nature, predicting energy level alignment, predicting charge transfer, handling weak interactions, and more. Solving all these problems within conventional DFT is extremely difficult, and even if at all possible the result will likely be too computationally complex for many applications.
Instead, I propose a completely different strategy - sacrifice the quest for an all-purpose functional and focus on per-system physical criteria that can fix system-specific parameters without recourse to empiricism. The additional flexibility would help us gain tremendously in simplicity and applicability without loss of predictive power. I propose a practical scheme based on tunable range-separated hybrid functionals and a plan for its application to a wide range of practical systems.
Summary
I propose to develop a broadly applicable, quantitatively reliable, computationally simple approach to the study of large heterogeneous systems, and to apply it to important problems in molecular and organic electronics and photovoltaics. This will be based on a radically different approach to the development and application of density functional theory (DFT) - determining an optimally yet non-empirically tuned system-specific functional, instead of seeking a universally applicable one.
Large heterogeneous systems are vital to several of the most burning challenges facing materials science. Perhaps most notably, this includes materials systems relevant for basic energy sciences, e.g., for photovoltaics or photocatalysis, but also includes, e.g., organic/inorganic interfaces that are crucial for molecular, organic, and hybrid organic/inorganic (opto)electronic systems. Theory and modelling of such systems face many challenges and would benefit greatly from accurate first principles calculations. However, the “work-horse” of such large-scale calculations – DFT – faces multiple, serious challenges when applied to such systems. This includes treating systems with components of different chemical nature, predicting energy level alignment, predicting charge transfer, handling weak interactions, and more. Solving all these problems within conventional DFT is extremely difficult, and even if at all possible the result will likely be too computationally complex for many applications.
Instead, I propose a completely different strategy - sacrifice the quest for an all-purpose functional and focus on per-system physical criteria that can fix system-specific parameters without recourse to empiricism. The additional flexibility would help us gain tremendously in simplicity and applicability without loss of predictive power. I propose a practical scheme based on tunable range-separated hybrid functionals and a plan for its application to a wide range of practical systems.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym QUCC
Project Chemistry of the Quantum Kind
Researcher (PI) Edvardas Narevicius
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), PE4, ERC-2013-CoG
Summary There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, such that the quantum wave nature could be observed. Recently we have demonstrated a new way of studying cold reactive collisions by magnetically merging two fast neutral supersonic beams. After 40 years where the reactive scattering temperature was limited to above 5 K we were able to continuously tune collision energies from hundreds of Kelvin down to 10 mK temperature, a reduction of almost three orders of magnitude [A. B. Henson et. al, Science 338, 234, 2012]. Importantly, we were able to show that at low temperatures quantum effects start dominating reactive dynamics with the first observation of orbiting resonances in a reactive collision. We propose to extend our novel method to study chemical reactions in the regime of Cold Chemistry where the reactants’s de Broglie wavelength becomes larger compared to the characteristic interaction range. Theoretical predictions at low temperatures are extremely sensitive to the parameters used, routinely differing by orders of magnitude leading to contradictions waiting to be settled by experiment.
Our ability to reach low enough collision energies and resolve scattering resonances will be used to bring a radical change to transient species spectroscopy. We believe that our work will not only test the central tenets of Quantum Chemistry, but will also provide valuable information to other fields, such as Astrochemistry helping to understand the synthesis of various molecules in interstellar space at temperatures 10 K and below.
Summary
There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, such that the quantum wave nature could be observed. Recently we have demonstrated a new way of studying cold reactive collisions by magnetically merging two fast neutral supersonic beams. After 40 years where the reactive scattering temperature was limited to above 5 K we were able to continuously tune collision energies from hundreds of Kelvin down to 10 mK temperature, a reduction of almost three orders of magnitude [A. B. Henson et. al, Science 338, 234, 2012]. Importantly, we were able to show that at low temperatures quantum effects start dominating reactive dynamics with the first observation of orbiting resonances in a reactive collision. We propose to extend our novel method to study chemical reactions in the regime of Cold Chemistry where the reactants’s de Broglie wavelength becomes larger compared to the characteristic interaction range. Theoretical predictions at low temperatures are extremely sensitive to the parameters used, routinely differing by orders of magnitude leading to contradictions waiting to be settled by experiment.
Our ability to reach low enough collision energies and resolve scattering resonances will be used to bring a radical change to transient species spectroscopy. We believe that our work will not only test the central tenets of Quantum Chemistry, but will also provide valuable information to other fields, such as Astrochemistry helping to understand the synthesis of various molecules in interstellar space at temperatures 10 K and below.
Max ERC Funding
1 982 908 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym Real-PIM-System
Project Memristive In-Memory Processing System
Researcher (PI) shahar KVATINSKY
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Our project aims to develop a new computer architecture that enables true in-memory processing based on a unit that can both store and process data using the same cells. This unit, called a memristive memory processing unit (mMPU), will substantially reduce the necessity to move data in computing systems, solving the two main bottlenecks exist in current computing systems, i.e., speed ('memory wall') and energy efficiency ('power wall'). Emerging memory technologies, namely memristive devices, are the enablers of the mMPU. While memristors are naturally used as memory, these novel devices can also perform logical operations using a technique we have invented called Memristor Aided Logic (MAGIC). This combination is the basis of mMPU.
The goal of this research is to design a fully functional mMPU, and by that, to demonstrate a real computing system with significantly improved performance and energy efficiency. We have identified four main research tasks which must be completed to demonstrate a full system utilizing mMPU: mMPU design, system architecture and software, modeling and evaluation, and fabrication. Both memristive memory array and mMPU control will be designed and optimized for different technologies in the first objective. The second objective will deal with the different aspects of the system, including programming model, different mMPU modes of operation and their corresponding system implications, compiler and operating systems. For system evaluation, we will develop models and tools in the third objective in order to measure the performance, area and energy and to compare them to other state-of-the-art computing systems. Lastly, we will fabricate the different parts of the system to demonstrate the full system.
Encouraged from our preliminary experimental results, we expect to achieve 10X improvement in performance, and 100X improvement in energy efficiency as compared to state-of-the-art von Neumann systems when working with appropriate workloads.
Summary
Our project aims to develop a new computer architecture that enables true in-memory processing based on a unit that can both store and process data using the same cells. This unit, called a memristive memory processing unit (mMPU), will substantially reduce the necessity to move data in computing systems, solving the two main bottlenecks exist in current computing systems, i.e., speed ('memory wall') and energy efficiency ('power wall'). Emerging memory technologies, namely memristive devices, are the enablers of the mMPU. While memristors are naturally used as memory, these novel devices can also perform logical operations using a technique we have invented called Memristor Aided Logic (MAGIC). This combination is the basis of mMPU.
The goal of this research is to design a fully functional mMPU, and by that, to demonstrate a real computing system with significantly improved performance and energy efficiency. We have identified four main research tasks which must be completed to demonstrate a full system utilizing mMPU: mMPU design, system architecture and software, modeling and evaluation, and fabrication. Both memristive memory array and mMPU control will be designed and optimized for different technologies in the first objective. The second objective will deal with the different aspects of the system, including programming model, different mMPU modes of operation and their corresponding system implications, compiler and operating systems. For system evaluation, we will develop models and tools in the third objective in order to measure the performance, area and energy and to compare them to other state-of-the-art computing systems. Lastly, we will fabricate the different parts of the system to demonstrate the full system.
Encouraged from our preliminary experimental results, we expect to achieve 10X improvement in performance, and 100X improvement in energy efficiency as compared to state-of-the-art von Neumann systems when working with appropriate workloads.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym SHIFTIDES
Project Shifting the oligomerization equilibrium of proteins: a novel therapeutic strategy
Researcher (PI) Assaf Friedler
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The aim of my project is to establish a multidisciplinary platform for quantitative biophysical analysis of protein-protein interactions in health and disease as a basis for drug design: (1) Analyzing protein-protein interactions at the molecular level in healthy systems; (2) Understanding what goes wrong in disease at the molecular level; (3) Development of drugs that will restore the biological system to its healthy conditions. My team will apply this approach to establish the concept of shifting the oligomerization equilibrium of proteins as a therapeutic strategy. I will expand the concepts of allosteric inhibitors and chemical chaperones, and develop the “shiftides”: peptides that shift the oligomerization equilibrium of a protein to modulate its activity, as a new and widely applicable methodology for drug design. I will apply this concept for: (1) inhibiting a protein by binding preferentially to the inactive oligomeric state and shifting the oligomerization equilibrium of the protein towards it; I have demonstrated the feasibility of this approach and developed promising anti-HIV peptides that inhibit the HIV-1 integrase and consequently HIV-1 replication in cells by shifting the integrase oligomerization equilibrium from the active dimer to the inactive tetramer. My team will further develop these peptides, and apply the same approach to inhibit the HIV proteins reverse transcriptase and protease; (2) Activating a protein by binding preferentially to the active oligomeric state and shifting the oligomerization equilibrium towards it: This will be applied for activation of the tumor suppressor p53, by shifting its oligomerization equilibrium from the inactive dimer to the active tetramer. Such shiftides will serve as anti-cancer lead compounds. My project will open new doors in the field of drug design, and at the end of the five-year period will result in a general new methodology to affect protein function for medical purposes.
Summary
The aim of my project is to establish a multidisciplinary platform for quantitative biophysical analysis of protein-protein interactions in health and disease as a basis for drug design: (1) Analyzing protein-protein interactions at the molecular level in healthy systems; (2) Understanding what goes wrong in disease at the molecular level; (3) Development of drugs that will restore the biological system to its healthy conditions. My team will apply this approach to establish the concept of shifting the oligomerization equilibrium of proteins as a therapeutic strategy. I will expand the concepts of allosteric inhibitors and chemical chaperones, and develop the “shiftides”: peptides that shift the oligomerization equilibrium of a protein to modulate its activity, as a new and widely applicable methodology for drug design. I will apply this concept for: (1) inhibiting a protein by binding preferentially to the inactive oligomeric state and shifting the oligomerization equilibrium of the protein towards it; I have demonstrated the feasibility of this approach and developed promising anti-HIV peptides that inhibit the HIV-1 integrase and consequently HIV-1 replication in cells by shifting the integrase oligomerization equilibrium from the active dimer to the inactive tetramer. My team will further develop these peptides, and apply the same approach to inhibit the HIV proteins reverse transcriptase and protease; (2) Activating a protein by binding preferentially to the active oligomeric state and shifting the oligomerization equilibrium towards it: This will be applied for activation of the tumor suppressor p53, by shifting its oligomerization equilibrium from the inactive dimer to the active tetramer. Such shiftides will serve as anti-cancer lead compounds. My project will open new doors in the field of drug design, and at the end of the five-year period will result in a general new methodology to affect protein function for medical purposes.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym SINSLIM
Project Smart Inorganic Nanocrystals for Sub-diffraction Limited IMaging
Researcher (PI) Dan Oron
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary "The goal of this proposal is to design and fabricate ""smart"" inorganic fluorophores, which could replace to replace currently used organic dyes for far-field sub-diffraction limited microscopy applications. Delicate band-gap engineering of the structure and composition of colloidal semiconductor nanocrystals is suggested as a path to achieving the required nonlinear all-optical control over their luminescent properties. In conjunction with the inherent photostability, tunability and ease of excitation of these nanocrystals, this can pave the way towards greatly simplified instrumentation and techniques, implying dramatically reduced costs and significantly broader accessibility to sub-diffraction limited imaging.
The proposed research is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on time and frequency resolved photophysical studies down to the single nanocrystal level. Several schemes for photoactivation and reversible photobleaching of designed nanocrystals, where the localization regime of excited carriers differs between the electrons and the holes, will be explored. These include effective ionization of the emitting nanocrystal core and optical pumping of two-color emitting QDs to a single emitting state. Fulfilling the optical and material requirements from this type of system, including photostability, control of intra-nanocrystal charge- and energy-transfer processes, and a large quantum yield, will inevitably reveal some of the fundamental properties of the unique system of strongly coupled quantum dots in a single nanocrystal."
Summary
"The goal of this proposal is to design and fabricate ""smart"" inorganic fluorophores, which could replace to replace currently used organic dyes for far-field sub-diffraction limited microscopy applications. Delicate band-gap engineering of the structure and composition of colloidal semiconductor nanocrystals is suggested as a path to achieving the required nonlinear all-optical control over their luminescent properties. In conjunction with the inherent photostability, tunability and ease of excitation of these nanocrystals, this can pave the way towards greatly simplified instrumentation and techniques, implying dramatically reduced costs and significantly broader accessibility to sub-diffraction limited imaging.
The proposed research is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on time and frequency resolved photophysical studies down to the single nanocrystal level. Several schemes for photoactivation and reversible photobleaching of designed nanocrystals, where the localization regime of excited carriers differs between the electrons and the holes, will be explored. These include effective ionization of the emitting nanocrystal core and optical pumping of two-color emitting QDs to a single emitting state. Fulfilling the optical and material requirements from this type of system, including photostability, control of intra-nanocrystal charge- and energy-transfer processes, and a large quantum yield, will inevitably reveal some of the fundamental properties of the unique system of strongly coupled quantum dots in a single nanocrystal."
Max ERC Funding
1 496 600 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym SMALLOSTERY
Project Single-molecule spectroscopy of coordinated motions in allosteric proteins
Researcher (PI) Gilad HARAN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Summary
Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Max ERC Funding
2 484 722 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym SMART
Project Structured nonlinear Metamaterials for efficient generation and Active functional control of Radiation of THz light
Researcher (PI) Tal ELLENBOGEN
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary The terahertz optical regime, covering the long wavelength end of the optical spectrum, has been for many years the least explored spectral regime. Recent interest in this regime has led to important emerging applications spanning many disciplines including medical, biological, materials sciences, communications, security, and basic sciences. However, advances in these emerging applications are held back by the lack of good and controllable terahertz light sources.
I propose to lead a potential breakthrough in this field by developing a new family of THz sources with unmatched functionality. The developed sources will be based on nano-engineered nonlinear heterostructured metamaterials, man-made materials with artificial optical properties. The proposal is based on very recent studies that show that metamaterials can be used to emit THz light with excellent efficiency, comparable to the best available nonlinear materials in nature. In addition it relies on our recent experimental demonstrations of functional nonlinear metamaterials that allow unprecedented control of nonlinear optical interactions. We will apply this recent knowledge to design novel active metamaterials that efficiently emit THz light at any desired frequency, shape and polarization, focus it directly from the emitter to a desired sample location and even actively steer and modify its radiation properties all-optically. In addition, we will enhance the THz generation efficiency from metamaterials by more than three orders of magnitude compared to the state of the art. We will also use our expertise to fabricate large scale and multi-layered THz light emitting metamaterials by leveraging novel nanolithography methods. Overall I expect that the outcome of this research will be in development of one of a kind family of THz light emitters that will lead to the, long sought for, leap in THz technology and will open the door to new applications and to new tools for advancing fundamental science.
Summary
The terahertz optical regime, covering the long wavelength end of the optical spectrum, has been for many years the least explored spectral regime. Recent interest in this regime has led to important emerging applications spanning many disciplines including medical, biological, materials sciences, communications, security, and basic sciences. However, advances in these emerging applications are held back by the lack of good and controllable terahertz light sources.
I propose to lead a potential breakthrough in this field by developing a new family of THz sources with unmatched functionality. The developed sources will be based on nano-engineered nonlinear heterostructured metamaterials, man-made materials with artificial optical properties. The proposal is based on very recent studies that show that metamaterials can be used to emit THz light with excellent efficiency, comparable to the best available nonlinear materials in nature. In addition it relies on our recent experimental demonstrations of functional nonlinear metamaterials that allow unprecedented control of nonlinear optical interactions. We will apply this recent knowledge to design novel active metamaterials that efficiently emit THz light at any desired frequency, shape and polarization, focus it directly from the emitter to a desired sample location and even actively steer and modify its radiation properties all-optically. In addition, we will enhance the THz generation efficiency from metamaterials by more than three orders of magnitude compared to the state of the art. We will also use our expertise to fabricate large scale and multi-layered THz light emitting metamaterials by leveraging novel nanolithography methods. Overall I expect that the outcome of this research will be in development of one of a kind family of THz light emitters that will lead to the, long sought for, leap in THz technology and will open the door to new applications and to new tools for advancing fundamental science.
Max ERC Funding
1 937 500 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym SPADE
Project from SPArsity to DEep learning
Researcher (PI) Raja Giryes
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Lately, deep learning (DL) has become one of the most powerful machine learning tools with ground-breaking results in computer vision, signal & image processing, language processing, and many other domains. However, one of its main deficiencies is the lack of theoretical foundation. While some theory has been developed, it is widely agreed that DL is not well-understood yet.
A proper understanding of the learning mechanism and architecture is very likely to broaden the great success to new fields and applications. In particular, it has the promise of improving DL performance in the unsupervised regime and on regression tasks, where it is currently lagging behind its otherwise spectacular success demonstrated in massively-supervised classification problems.
A somewhat related and popular data model is based on sparse-representations. It led to cutting-edge methods in various fields such as medical imaging, computer vision and signal & image processing. Its success can be largely attributed to its well-established theoretical foundation, which boosted the development of its various ramifications. Recent work suggests a close relationship between this model and DL, although this bridge is not fully clear nor developed.
This project revolves around the use of sparsity with DL. It aims at bridging the fundamental gap in the theory of DL using tools applied in sparsity, highlighting the role of structure in data as the foundation for elucidating the success of DL. It also aims at using efficient DL methods to improve the solution of problems using sparse models. Moreover, this project pursues a unified theoretical framework merging sparsity with DL, in particular migrating powerful unsupervised learning concepts from the realm of sparsity to that of DL. A successful marriage between the two fields has a great potential impact of giving rise to a new generation of learning methods and architectures and bringing DL to unprecedented new summits in novel domains and tasks.
Summary
Lately, deep learning (DL) has become one of the most powerful machine learning tools with ground-breaking results in computer vision, signal & image processing, language processing, and many other domains. However, one of its main deficiencies is the lack of theoretical foundation. While some theory has been developed, it is widely agreed that DL is not well-understood yet.
A proper understanding of the learning mechanism and architecture is very likely to broaden the great success to new fields and applications. In particular, it has the promise of improving DL performance in the unsupervised regime and on regression tasks, where it is currently lagging behind its otherwise spectacular success demonstrated in massively-supervised classification problems.
A somewhat related and popular data model is based on sparse-representations. It led to cutting-edge methods in various fields such as medical imaging, computer vision and signal & image processing. Its success can be largely attributed to its well-established theoretical foundation, which boosted the development of its various ramifications. Recent work suggests a close relationship between this model and DL, although this bridge is not fully clear nor developed.
This project revolves around the use of sparsity with DL. It aims at bridging the fundamental gap in the theory of DL using tools applied in sparsity, highlighting the role of structure in data as the foundation for elucidating the success of DL. It also aims at using efficient DL methods to improve the solution of problems using sparse models. Moreover, this project pursues a unified theoretical framework merging sparsity with DL, in particular migrating powerful unsupervised learning concepts from the realm of sparsity to that of DL. A successful marriage between the two fields has a great potential impact of giving rise to a new generation of learning methods and architectures and bringing DL to unprecedented new summits in novel domains and tasks.
Max ERC Funding
1 499 375 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym SPARSE
Project Next Generation Sparsity-Based Signal Modeling
Researcher (PI) Michael Elad
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE7, ERC-2012-ADG_20120216
Summary One could not imagine the vast progress made in signal and image processing in the past 50 years without the central contribution of data models. A model imposes a structure on the data, enabling numerous applications. Due to their importance, a considerable research attention has been devoted to the design and use of signal models. Through the past several decades, an evolution of contributions led to a series of constantly improving modeling ideas, and better performance in applications as a consequence. In that respect, the past decade has been certainly the era of sparse and redundant representations, a popular and highly effective model for describing signals.
Despite the huge attractiveness and success that this and other signal models have had so far, this field is still at its infancy, with many unanswered questions and major shortcomings, all pointing to unexplored avenues of future research. The overall objective of this proposal is to bring sparsity-based signal modeling to new frontiers by revolutionizing the way these models are defined and practiced.
More specifically, this proposal outlines several key research directions that will enable us to overcome existing modeling flaws. These include a thorough investigation of the co-sparse analysis model, one of the next fascinating phases of the field of sparse and redundant representations. This new model suggests an alternative rational and has the potential to outperform earlier models. Other directions to be explored in this project are a super-model built as a tree-constellation of sparsity-based models in an attempt to carve better the signal space, a migration from a union-of-subspaces to a union-of-sets, a systematic study of modeling errors in general, and more. The advances that we aim to make will have a marked impact and open the way towards the next generation of signal models and their use in practice.
Summary
One could not imagine the vast progress made in signal and image processing in the past 50 years without the central contribution of data models. A model imposes a structure on the data, enabling numerous applications. Due to their importance, a considerable research attention has been devoted to the design and use of signal models. Through the past several decades, an evolution of contributions led to a series of constantly improving modeling ideas, and better performance in applications as a consequence. In that respect, the past decade has been certainly the era of sparse and redundant representations, a popular and highly effective model for describing signals.
Despite the huge attractiveness and success that this and other signal models have had so far, this field is still at its infancy, with many unanswered questions and major shortcomings, all pointing to unexplored avenues of future research. The overall objective of this proposal is to bring sparsity-based signal modeling to new frontiers by revolutionizing the way these models are defined and practiced.
More specifically, this proposal outlines several key research directions that will enable us to overcome existing modeling flaws. These include a thorough investigation of the co-sparse analysis model, one of the next fascinating phases of the field of sparse and redundant representations. This new model suggests an alternative rational and has the potential to outperform earlier models. Other directions to be explored in this project are a super-model built as a tree-constellation of sparsity-based models in an attempt to carve better the signal space, a migration from a union-of-subspaces to a union-of-sets, a systematic study of modeling errors in general, and more. The advances that we aim to make will have a marked impact and open the way towards the next generation of signal models and their use in practice.
Max ERC Funding
2 269 554 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym TCCECJ
Project Theologies of conversion to Christianity in early modern east-central Europan Judaism
Researcher (PI) Pawel Tadeusz Maciejko
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary This project endeavors to recalibrate the accepted understanding of the Jewish-Christian interchange in the early modern East-Central Europe in light of an analysis of Jewish theological elaborations of conversion to Christianity. From the mid-seventeenth century onwards conversion to Christianity became one of the central intellectual (and not merely practical) concerns of Judaism. By attempting to reconstruct the theological conceptualizations of conversions (and not – as did other scholars – biographies of the converts), I shall challenge the prevailing scholarly paradigm of the existence of clear and impenetrable boundaries between Judaism and Christianity. My project seeks to systematically discuss this issue on the basis of an analysis of a large amount of previously unknown primary sources, thereby shedding significant new light on the Jewish Christian relations in Central Europe in the early modern period.
Summary
This project endeavors to recalibrate the accepted understanding of the Jewish-Christian interchange in the early modern East-Central Europe in light of an analysis of Jewish theological elaborations of conversion to Christianity. From the mid-seventeenth century onwards conversion to Christianity became one of the central intellectual (and not merely practical) concerns of Judaism. By attempting to reconstruct the theological conceptualizations of conversions (and not – as did other scholars – biographies of the converts), I shall challenge the prevailing scholarly paradigm of the existence of clear and impenetrable boundaries between Judaism and Christianity. My project seeks to systematically discuss this issue on the basis of an analysis of a large amount of previously unknown primary sources, thereby shedding significant new light on the Jewish Christian relations in Central Europe in the early modern period.
Max ERC Funding
1 045 200 €
Duration
Start date: 2011-02-01, End date: 2016-01-31