Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym ABDESIGN
Project Computational design of novel protein function in antibodies
Researcher (PI) Sarel-Jacob Fleishman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Summary
We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym AXONGROWTH
Project Systematic analysis of the molecular mechanisms underlying axon growth during development and following injury
Researcher (PI) Oren Schuldiner
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Summary
Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BEAMING
Project Detecting massive-planet/brown-dwarf/low-mass-stellar companions with the beaming effect
Researcher (PI) Moshe Zvi Mazeh
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary "I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Summary
"I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Max ERC Funding
1 737 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym Brain circRNAs
Project Rounding the circle: Unravelling the biogenesis, function and mechanism of action of circRNAs in the Drosophila brain.
Researcher (PI) Sebastian Kadener
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Summary
Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Max ERC Funding
1 971 750 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CHOLINOMIRS
Project CholinomiRs: MicroRNA Regulators of Cholinergic Signalling in the Neuro-Immune Interface
Researcher (PI) Hermona Soreq
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary "Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Summary
"Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Max ERC Funding
2 375 600 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CIRCOMMUNICATION
Project Deciphering molecular pathways of circadian clock communication
Researcher (PI) gad ASHER
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS1, ERC-2017-COG
Summary The overarching objective of this interdisciplinary project is to elucidate mechanisms through which billions of individual clocks in the body communicate with each other and tick in harmony. The mammalian circadian timing system consists of a master clock in the brain and subsidiary oscillators in almost every cell of the body. Since these clocks anticipate environmental changes and function together to orchestrate daily physiology and behavior their temporal synchronization is critical.
Our recent finding that oxygen serves as a resetting cue for circadian clocks points towards the unprecedented involvement of blood gases as time signals. We will apply cutting edge continuous physiological measurements in freely moving animals, alongside biochemical/molecular biology approaches and advanced cell culture setup to determine the molecular role of oxygen, carbon dioxide and pH in circadian clock communication and function.
The intricate nature of the mammalian circadian system demands the presence of communication mechanisms between clocks throughout the body at multiple levels. While previous studies primarily addressed the role of the master clock in resetting peripheral clocks, our knowledge regarding the communication among clocks between and within peripheral organs is rudimentary. We will reconstruct the mammalian circadian system from the bottom up, sequentially restoring clocks in peripheral tissues of a non-rhythmic animal to (i) obtain a system-view of the peripheral circadian communication network; and (ii) study novel tissue-derived circadian communication mechanisms.
This integrative proposal addresses fundamental aspects of circadian biology. It is expected to unravel the circadian communication network and shed light on how billions of clocks in the body function in unison. Its impact extends beyond circadian rhythms and bears great potential for research on communication between cells/tissues in various fields of biology.
Summary
The overarching objective of this interdisciplinary project is to elucidate mechanisms through which billions of individual clocks in the body communicate with each other and tick in harmony. The mammalian circadian timing system consists of a master clock in the brain and subsidiary oscillators in almost every cell of the body. Since these clocks anticipate environmental changes and function together to orchestrate daily physiology and behavior their temporal synchronization is critical.
Our recent finding that oxygen serves as a resetting cue for circadian clocks points towards the unprecedented involvement of blood gases as time signals. We will apply cutting edge continuous physiological measurements in freely moving animals, alongside biochemical/molecular biology approaches and advanced cell culture setup to determine the molecular role of oxygen, carbon dioxide and pH in circadian clock communication and function.
The intricate nature of the mammalian circadian system demands the presence of communication mechanisms between clocks throughout the body at multiple levels. While previous studies primarily addressed the role of the master clock in resetting peripheral clocks, our knowledge regarding the communication among clocks between and within peripheral organs is rudimentary. We will reconstruct the mammalian circadian system from the bottom up, sequentially restoring clocks in peripheral tissues of a non-rhythmic animal to (i) obtain a system-view of the peripheral circadian communication network; and (ii) study novel tissue-derived circadian communication mechanisms.
This integrative proposal addresses fundamental aspects of circadian biology. It is expected to unravel the circadian communication network and shed light on how billions of clocks in the body function in unison. Its impact extends beyond circadian rhythms and bears great potential for research on communication between cells/tissues in various fields of biology.
Max ERC Funding
1 999 945 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CLAUSTRUM
Project The Claustrum: A Circuit Hub for Attention
Researcher (PI) Amihai CITRI
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Our senses face a constant barrage of information. Hence, understanding how our brain enables us to attend to relevant stimuli, while ignoring distractions, is of increasing biomedical importance. Recently, I discovered that the claustrum, a multi-sensory hub and recipient of extensive neuromodulatory input, enables resilience to distraction.
In my ERC project, I will explore the mechanisms underlying claustral mediation of resilience to distraction and develop novel approaches for assessing and modulating attention in mice, with implications for humans. Transgenic mouse models that I identified as enabling selective access to claustral neurons overcome its limiting anatomy, making the claustrum accessible to functional investigation. Using this novel genetic access, I obtained preliminary results strongly suggesting that the claustrum functions to filter distractions by adjusting cortical sensory gain.
My specific aims are: 1) To delineate the mechanisms whereby the claustrum achieves sensory gain control, by applying in-vivo cell-attached, multi-unit and fiber photometry recordings from claustral and cortical neurons during attention-demanding tasks. 2) To discriminate between the functions of the claustrum in multi-sensory integration and implementation of attention strategies, by employing multi-sensory behavioral paradigms while modulating claustral function. 3) To develop validated complementary physiological and behavioral protocols for adjusting claustral mediation of attention via neuromodulation.
This study is unique in its focus and aims: it will provide a stringent neurophysiological framework for defining a key mechanism underlying cognitive concepts of attention, and establish a novel platform for studying the function of the claustrum and manipulating its activity. The project is designed to achieve breakthroughs of fundamental nature and potentially lead to diagnostic and therapeutic advances relevant to attention disorders.
Summary
Our senses face a constant barrage of information. Hence, understanding how our brain enables us to attend to relevant stimuli, while ignoring distractions, is of increasing biomedical importance. Recently, I discovered that the claustrum, a multi-sensory hub and recipient of extensive neuromodulatory input, enables resilience to distraction.
In my ERC project, I will explore the mechanisms underlying claustral mediation of resilience to distraction and develop novel approaches for assessing and modulating attention in mice, with implications for humans. Transgenic mouse models that I identified as enabling selective access to claustral neurons overcome its limiting anatomy, making the claustrum accessible to functional investigation. Using this novel genetic access, I obtained preliminary results strongly suggesting that the claustrum functions to filter distractions by adjusting cortical sensory gain.
My specific aims are: 1) To delineate the mechanisms whereby the claustrum achieves sensory gain control, by applying in-vivo cell-attached, multi-unit and fiber photometry recordings from claustral and cortical neurons during attention-demanding tasks. 2) To discriminate between the functions of the claustrum in multi-sensory integration and implementation of attention strategies, by employing multi-sensory behavioral paradigms while modulating claustral function. 3) To develop validated complementary physiological and behavioral protocols for adjusting claustral mediation of attention via neuromodulation.
This study is unique in its focus and aims: it will provide a stringent neurophysiological framework for defining a key mechanism underlying cognitive concepts of attention, and establish a novel platform for studying the function of the claustrum and manipulating its activity. The project is designed to achieve breakthroughs of fundamental nature and potentially lead to diagnostic and therapeutic advances relevant to attention disorders.
Max ERC Funding
1 995 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28