Project acronym COLLREGEN
Project Collagen scaffolds for bone regeneration: applied biomaterials, bioreactor and stem cell technology
Researcher (PI) Fergal Joseph O'brien
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary Regenerative medicine aims to regenerate damaged tissues by developing functional cell, tissue, and organ substitutes to repair, replace or enhance biological function in damaged tissues. The focus of this research programme is to develop bone graft substitute biomaterials and laboratory-engineered bone tissue for implantation in damaged sites. At a simplistic level, biological tissues consist of cells, signalling mechanisms and extracellular matrix. Regenerative medicine/tissue engineering technologies are based on this biological triad and involve the successful interaction between three components: the scaffold that holds the cells together to create the tissues physical form, the cells that create the tissue, and the biological signalling mechanisms (such as growth factors or bioreactors) that direct the cells to express the desired tissue phenotype. The research proposed in this project includes specific projects in all three areas. The programme will be centred on the collagen-based biomaterials developed in the applicant s laboratory and will incorporate cutting edge stem cell technologies, growth factor delivery, gene therapy and bioreactor technology which will translate to in vivo tissue repair. This translational research programme will be divided into four specific themes: (i) development of novel osteoinductive and angiogenic smart scaffolds for bone tissue regeneration, (ii) scaffold and stem cell therapies for bone tissue regeneration, (iii) bone tissue engineering using a flow perfusion bioreactor and (iv) in vivo bone repair using engineered bone and smart scaffolds.
Summary
Regenerative medicine aims to regenerate damaged tissues by developing functional cell, tissue, and organ substitutes to repair, replace or enhance biological function in damaged tissues. The focus of this research programme is to develop bone graft substitute biomaterials and laboratory-engineered bone tissue for implantation in damaged sites. At a simplistic level, biological tissues consist of cells, signalling mechanisms and extracellular matrix. Regenerative medicine/tissue engineering technologies are based on this biological triad and involve the successful interaction between three components: the scaffold that holds the cells together to create the tissues physical form, the cells that create the tissue, and the biological signalling mechanisms (such as growth factors or bioreactors) that direct the cells to express the desired tissue phenotype. The research proposed in this project includes specific projects in all three areas. The programme will be centred on the collagen-based biomaterials developed in the applicant s laboratory and will incorporate cutting edge stem cell technologies, growth factor delivery, gene therapy and bioreactor technology which will translate to in vivo tissue repair. This translational research programme will be divided into four specific themes: (i) development of novel osteoinductive and angiogenic smart scaffolds for bone tissue regeneration, (ii) scaffold and stem cell therapies for bone tissue regeneration, (iii) bone tissue engineering using a flow perfusion bioreactor and (iv) in vivo bone repair using engineered bone and smart scaffolds.
Max ERC Funding
1 999 530 €
Duration
Start date: 2009-11-01, End date: 2015-09-30
Project acronym CORALWARM
Project Corals and global warming: The Mediterranean versus the Red Sea
Researcher (PI) Zvy Dubinsky
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary CoralWarm will generate for the first time projections of temperate and subtropical coral survival by integrating sublethal temperature increase effects on metabolic and skeletal processes in Mediterranean and Red Sea key species. CoralWarm unique approach is from the nano- to the macro-scale, correlating molecular events to environmental processes. This will show new pathways to future investigations on cellular mechanisms linking environmental factors to final phenotype, potentially improving prediction powers and paleoclimatological interpretation. Biological and chemical expertise will merge, producing new interdisciplinary approaches for ecophysiology and biomineralization. Field transplantations will be combined with controlled experiments under IPCC scenarios. Corals will be grown in aquaria, exposing the Mediterranean species native to cooler waters to higher temperatures, and the Red Sea ones to gradually increasing above ambient warming seawater. Virtually all state-of-the-art methods will be used, by uniquely combining the investigators expertise. Expected results include responses of algal symbionts photosynthesis, host, symbiont and holobiont respiration, biomineralization rates and patterns, including colony architecture, and reproduction to temperature and pH gradients and combinations. Integration of molecular aspects of potential replacement of symbiont clades, changes in skeletal crystallography, with biochemical and physiological aspects of temperature response, will lead to a novel mechanistic model predicting changes in coral ecology and survival prospect. High-temperature tolerant clades and species will be revealed, allowing future bioremediation actions and establishment of coral refuges, saving corals and coral reefs for future generations.
Summary
CoralWarm will generate for the first time projections of temperate and subtropical coral survival by integrating sublethal temperature increase effects on metabolic and skeletal processes in Mediterranean and Red Sea key species. CoralWarm unique approach is from the nano- to the macro-scale, correlating molecular events to environmental processes. This will show new pathways to future investigations on cellular mechanisms linking environmental factors to final phenotype, potentially improving prediction powers and paleoclimatological interpretation. Biological and chemical expertise will merge, producing new interdisciplinary approaches for ecophysiology and biomineralization. Field transplantations will be combined with controlled experiments under IPCC scenarios. Corals will be grown in aquaria, exposing the Mediterranean species native to cooler waters to higher temperatures, and the Red Sea ones to gradually increasing above ambient warming seawater. Virtually all state-of-the-art methods will be used, by uniquely combining the investigators expertise. Expected results include responses of algal symbionts photosynthesis, host, symbiont and holobiont respiration, biomineralization rates and patterns, including colony architecture, and reproduction to temperature and pH gradients and combinations. Integration of molecular aspects of potential replacement of symbiont clades, changes in skeletal crystallography, with biochemical and physiological aspects of temperature response, will lead to a novel mechanistic model predicting changes in coral ecology and survival prospect. High-temperature tolerant clades and species will be revealed, allowing future bioremediation actions and establishment of coral refuges, saving corals and coral reefs for future generations.
Max ERC Funding
3 332 032 €
Duration
Start date: 2010-06-01, End date: 2016-05-31
Project acronym DCENSY
Project Doping, Charge Transfer and Energy Flow in Hybrid Nanoparticle Systems
Researcher (PI) Uri Banin
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE4, ERC-2009-AdG
Summary We target a frontier in nanocrystal science of combining disparate materials into a single hybrid nanosystem. This offers an intriguing route to engineer nanomaterials with multiple functionalities in ways that are not accessible in bulk materials or in molecules. Such control of novel material combinations on a single nanoparticle or in a super-structure of assembled nanoparticles, presents alongside with the synthesis challenges, fundamental questions concerning the physical attributes of nanoscale systems. My goals are to create new highly controlled hybrid nanoparticle systems, focusing on combinations of semiconductors and metals, and to decipher the fundamental principles governing doping in nanoparticles and charge and energy transfer processes among components of the hybrid systems. The research addresses several key challenges: First, in synthesis, combining disparate material components into one hybrid nanoparticle system. Second, in self assembly, organizing a combination of semiconductor (SC) and metal nanoparticle building blocks into hybrid systems with controlled architecture. Third in fundamental physico-chemical questions pertaining to the unique attributes of the hybrid systems, constituting a key component of the research. A first aspect concerns doping of SC nanoparticles with metal atoms. A second aspect concerns light-induced charge transfer between the SC part and metal parts of the hybrid constructs. A third related aspect concerns energy transfer processes between the SC and metal components and the interplay between near-field enhancement and fluorescence quenching effects. Due to the new properties, significant impact on nanocrystal applications in solar energy harvesting, biological tagging, sensing, optics and electropotics is expected.
Summary
We target a frontier in nanocrystal science of combining disparate materials into a single hybrid nanosystem. This offers an intriguing route to engineer nanomaterials with multiple functionalities in ways that are not accessible in bulk materials or in molecules. Such control of novel material combinations on a single nanoparticle or in a super-structure of assembled nanoparticles, presents alongside with the synthesis challenges, fundamental questions concerning the physical attributes of nanoscale systems. My goals are to create new highly controlled hybrid nanoparticle systems, focusing on combinations of semiconductors and metals, and to decipher the fundamental principles governing doping in nanoparticles and charge and energy transfer processes among components of the hybrid systems. The research addresses several key challenges: First, in synthesis, combining disparate material components into one hybrid nanoparticle system. Second, in self assembly, organizing a combination of semiconductor (SC) and metal nanoparticle building blocks into hybrid systems with controlled architecture. Third in fundamental physico-chemical questions pertaining to the unique attributes of the hybrid systems, constituting a key component of the research. A first aspect concerns doping of SC nanoparticles with metal atoms. A second aspect concerns light-induced charge transfer between the SC part and metal parts of the hybrid constructs. A third related aspect concerns energy transfer processes between the SC and metal components and the interplay between near-field enhancement and fluorescence quenching effects. Due to the new properties, significant impact on nanocrystal applications in solar energy harvesting, biological tagging, sensing, optics and electropotics is expected.
Max ERC Funding
2 499 000 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym ERGODICNONCOMPACT
Project Ergodic theory on non compact spaces
Researcher (PI) Omri Moshe Sarig
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposal is to look for, and investigate, new ergodic theoretic types of behavior for dynamical systems which act on non compact spaces. These could include transience and non-trivial ways of escape to infinity, critical phenomena similar to phase transitions, and new types of measure rigidity. There are potential applications to smooth ergodic theory (non-uniform hyperbolicity), algebraic ergodic theory (actions on homogeneous spaces), and probability theory (weakly dependent stochastic processes).
Summary
The proposal is to look for, and investigate, new ergodic theoretic types of behavior for dynamical systems which act on non compact spaces. These could include transience and non-trivial ways of escape to infinity, critical phenomena similar to phase transitions, and new types of measure rigidity. There are potential applications to smooth ergodic theory (non-uniform hyperbolicity), algebraic ergodic theory (actions on homogeneous spaces), and probability theory (weakly dependent stochastic processes).
Max ERC Funding
539 479 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym GLC
Project Langlands correspondence and its variants
Researcher (PI) David Kazhdan
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE1, ERC-2009-AdG
Summary Sometimes in the sciences there are different yet complementary descriptions for the same object. This extends to the particle-wave duality of quantum mechanics; one mathematical analog of this duality is the Fourier transform. Questions that are difficult when formulated in one language of science may become simple when interpreted in another. The Langlands conjecture posits the existence of a correspondence between problems in arithmetic and in Representation Theory. The Langlands conjecture has only been proven for a limited number of cases, but even this has solved problems such as the famous Fermat conjecture. The aim of this project is to continue study of the "classical" aspects of the Langlands conjecture and to extend the conjecture to the quantum geometric Langlands correspondence, higher-dimensional fields, Kac-Moody groups (with D.Gaitsgory: quantum Langlands correspondence; D.Gaitsgory and E. Hrushevsi: groups over higher-dimensional fields; A. Braverman: Kac-Moody groups; R. Bezrukavnikov, S.Debacker, Y.Varshavsky: classical aspects of the correspondence; A. Berenstein: geometric crystals and crystal bases). The quantum case is much more symmetric than the classical case and can lead in the limit q->0 to new insights into the classical case. The quantum case is also related to the multiple Dirichlet series. New results in the quantum case would lead to progress in understanding important Number Theoretic questions. Extending the Langlands correspondence to groups over higher-dimensional fields could substantially enlarge its applicability. Studying Kac-Moody groups would provide tools for the new important class of L-functions. This progress could lead to a proof of the existence of the analytic continuation of classical L-functions. The geometric Langlands correspondence is closely related to T-symmetry in 4-dimensional gauge theory and the understanding of this relation is important for both Mathematics and Physics.
Summary
Sometimes in the sciences there are different yet complementary descriptions for the same object. This extends to the particle-wave duality of quantum mechanics; one mathematical analog of this duality is the Fourier transform. Questions that are difficult when formulated in one language of science may become simple when interpreted in another. The Langlands conjecture posits the existence of a correspondence between problems in arithmetic and in Representation Theory. The Langlands conjecture has only been proven for a limited number of cases, but even this has solved problems such as the famous Fermat conjecture. The aim of this project is to continue study of the "classical" aspects of the Langlands conjecture and to extend the conjecture to the quantum geometric Langlands correspondence, higher-dimensional fields, Kac-Moody groups (with D.Gaitsgory: quantum Langlands correspondence; D.Gaitsgory and E. Hrushevsi: groups over higher-dimensional fields; A. Braverman: Kac-Moody groups; R. Bezrukavnikov, S.Debacker, Y.Varshavsky: classical aspects of the correspondence; A. Berenstein: geometric crystals and crystal bases). The quantum case is much more symmetric than the classical case and can lead in the limit q->0 to new insights into the classical case. The quantum case is also related to the multiple Dirichlet series. New results in the quantum case would lead to progress in understanding important Number Theoretic questions. Extending the Langlands correspondence to groups over higher-dimensional fields could substantially enlarge its applicability. Studying Kac-Moody groups would provide tools for the new important class of L-functions. This progress could lead to a proof of the existence of the analytic continuation of classical L-functions. The geometric Langlands correspondence is closely related to T-symmetry in 4-dimensional gauge theory and the understanding of this relation is important for both Mathematics and Physics.
Max ERC Funding
1 277 060 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym HYDRATIONLUBE
Project Hydration lubrication: exploring a new paradigm
Researcher (PI) Jacob Klein
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2009-AdG
Summary In recent years, as first established in some 6 papers in Science and Nature from the PI s group, a new paradigm has emerged. This reveals the remarkable and unsuspected - role of hydration layers in modulating frictional forces between sliding surfaces or molecular layers in aqueous media, termed hydration lubrication, in which the lubricating mode is completely different from the classic one of oils or surfactants. In this project we address the substantial challenges that have now arisen: what are the underlying mechanisms controlling this effect? what are the potential breakthroughs that it may lead to? We will answer these questions through several interrelated objectives designed to address both fundamental aspects, as well as limits of applicability. We will use surface force balance (SFB) experiments, for which we will develop new methodologies, to characterize normal and frictional forces between atomically smooth surfaces where the nature of the surfaces (hydrophilic, hydrophobic, metallic, polymeric), as well as their electric potential, may be independently varied. We will examine mono- and multivalent ions to establish the role of relaxation rates and hydration energies in controlling the hydration lubrication, will probe hydration interactions at both hydrophobic/hydrophilic surfaces and will monitor slip of hydrated ions past surfaces. We will also characterize the hydration lubrication properties of a wide range of novel surface systems, including surfactants, liposomes, polymer brushes and, importantly, liposomes, using also synchrotron X-ray reflectometry for structural information. Attainment of these objectives should lead to conceptual breakthroughs both in our understanding of this new paradigm, and for its practical implications.
Summary
In recent years, as first established in some 6 papers in Science and Nature from the PI s group, a new paradigm has emerged. This reveals the remarkable and unsuspected - role of hydration layers in modulating frictional forces between sliding surfaces or molecular layers in aqueous media, termed hydration lubrication, in which the lubricating mode is completely different from the classic one of oils or surfactants. In this project we address the substantial challenges that have now arisen: what are the underlying mechanisms controlling this effect? what are the potential breakthroughs that it may lead to? We will answer these questions through several interrelated objectives designed to address both fundamental aspects, as well as limits of applicability. We will use surface force balance (SFB) experiments, for which we will develop new methodologies, to characterize normal and frictional forces between atomically smooth surfaces where the nature of the surfaces (hydrophilic, hydrophobic, metallic, polymeric), as well as their electric potential, may be independently varied. We will examine mono- and multivalent ions to establish the role of relaxation rates and hydration energies in controlling the hydration lubrication, will probe hydration interactions at both hydrophobic/hydrophilic surfaces and will monitor slip of hydrated ions past surfaces. We will also characterize the hydration lubrication properties of a wide range of novel surface systems, including surfactants, liposomes, polymer brushes and, importantly, liposomes, using also synchrotron X-ray reflectometry for structural information. Attainment of these objectives should lead to conceptual breakthroughs both in our understanding of this new paradigm, and for its practical implications.
Max ERC Funding
2 304 180 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym LARGEMS
Project The Dynamic Composition of Protein Complexes: A New Perspective in Structural Biology
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary 80% of the proteome exists in complexes or large macromolecular assemblies. It is accepted that revealing the structure of these protein complexes is a key towards mechanistic understanding of cellular processes. Yet, this might not be sufficient; a higher level of complexity probably exists and protein complexes may not be static and uniform in form and function as thought. A protein complex may actually represent an ensemble of compositionally distinct entities with functional versatility. My main aim is to provide evidence for this conceptual change and to reveal the dynamic architecture of a protein assembly. As a model system, I will investigate the COP9 signalosome (CSN), an evolutionary conserved multisubunit complex, which is involved in a variety of essential functions ranging from cell-cycle progression, DNA-repair and apoptosis. My strategy is based on a comprehensive approach, made up of four main steps; i) Revealing the structural organization of the native complex. ii) Establishing whether the complex has co-existing independent modules that function separately of, or coordinately with the holocomplex. iii) Monitoring in real-time the biogenesis and activation pathway of the complex and developing an approach for shifting its oligomerization equilibrium. iv) Determining the correlation between modularity of the complex and cell cycle progression and comparing its composition in healthy versus cancerous cells. I will integrate genetic, biochemical and structural biology approaches. In particular, I will apply a state of the art mass spectrometry technique, that will enable us to define the stoichiometry, subunit composition, dynamic interactions and structural organization of protein complexes isolated directly from the cellular environment.
Summary
80% of the proteome exists in complexes or large macromolecular assemblies. It is accepted that revealing the structure of these protein complexes is a key towards mechanistic understanding of cellular processes. Yet, this might not be sufficient; a higher level of complexity probably exists and protein complexes may not be static and uniform in form and function as thought. A protein complex may actually represent an ensemble of compositionally distinct entities with functional versatility. My main aim is to provide evidence for this conceptual change and to reveal the dynamic architecture of a protein assembly. As a model system, I will investigate the COP9 signalosome (CSN), an evolutionary conserved multisubunit complex, which is involved in a variety of essential functions ranging from cell-cycle progression, DNA-repair and apoptosis. My strategy is based on a comprehensive approach, made up of four main steps; i) Revealing the structural organization of the native complex. ii) Establishing whether the complex has co-existing independent modules that function separately of, or coordinately with the holocomplex. iii) Monitoring in real-time the biogenesis and activation pathway of the complex and developing an approach for shifting its oligomerization equilibrium. iv) Determining the correlation between modularity of the complex and cell cycle progression and comparing its composition in healthy versus cancerous cells. I will integrate genetic, biochemical and structural biology approaches. In particular, I will apply a state of the art mass spectrometry technique, that will enable us to define the stoichiometry, subunit composition, dynamic interactions and structural organization of protein complexes isolated directly from the cellular environment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym LAST
Project Large Scale Privacy-Preserving Technology in the Digital World - Infrastructure and Applications
Researcher (PI) Yehuda Lindell
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Summary
Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Max ERC Funding
1 921 316 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym MINT
Project Multiphoton Ionization Nano-Therapy
Researcher (PI) Dvir Yelin
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Summary
The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Max ERC Funding
1 782 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NOVCAT
Project Design of Novel Catalysis by Metal Complexes
Researcher (PI) David Milstein
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary Global concerns regarding the economy, environment and sustainable energy resources dictate an urgent need for the design of novel catalytic reactions. We have recently discovered novel, environmentally benign reactions catalyzed by pincer complexes, including an entirely new reaction, namely the direct coupling of alcohols with amines to produce amides and H2 (Science, 2007, 317, 790). We believe that the mechanisms of these reactions involve a new concept in catalysis: metal-ligand cooperation by aromatization-dearomatization of the ligand. Such cooperation can play key roles also in the activation of H2, C-H, and other bonds. Remarkably, we have very recently discovered a new strategy towards light-induced water splitting into H2 and O2, also based on metal-ligand cooperation in a pincer system, and have observed an unprecedented O-O bond formation process (Science, in press). The design of efficient catalytic systems for splitting water into hydrogen and oxygen, driven by sunlight, and without use of sacrificial reagents, is among the most important challenges facing science today, underpinning the potential of hydrogen as a clean, sustainable fuel. In this context, it is essential to enhance our understanding of the fundamental chemical steps involved in such processes. We plan to (a) explore the scope of bond activation and catalysis based on the new concept of metal ligand cooperation by aromatization-dearomatization (b) study the mechanism and scope of the newly discovered novel approach towards water splitting by light (c) develop novel environmentally benign catalytic reactions involving O-H, C-H and other bonds, such as anti-Markovnikov hydration of alkenes (d) develop unprecedented asymmetric catalysis using chiral cooperating ligands (e) develop new CO2 chemistry, including its hydrogenation to methanol and photolytic splitting to CO and O2. The research is expected to lead to novel catalysis, of importance to environment and sustainable energy.
Summary
Global concerns regarding the economy, environment and sustainable energy resources dictate an urgent need for the design of novel catalytic reactions. We have recently discovered novel, environmentally benign reactions catalyzed by pincer complexes, including an entirely new reaction, namely the direct coupling of alcohols with amines to produce amides and H2 (Science, 2007, 317, 790). We believe that the mechanisms of these reactions involve a new concept in catalysis: metal-ligand cooperation by aromatization-dearomatization of the ligand. Such cooperation can play key roles also in the activation of H2, C-H, and other bonds. Remarkably, we have very recently discovered a new strategy towards light-induced water splitting into H2 and O2, also based on metal-ligand cooperation in a pincer system, and have observed an unprecedented O-O bond formation process (Science, in press). The design of efficient catalytic systems for splitting water into hydrogen and oxygen, driven by sunlight, and without use of sacrificial reagents, is among the most important challenges facing science today, underpinning the potential of hydrogen as a clean, sustainable fuel. In this context, it is essential to enhance our understanding of the fundamental chemical steps involved in such processes. We plan to (a) explore the scope of bond activation and catalysis based on the new concept of metal ligand cooperation by aromatization-dearomatization (b) study the mechanism and scope of the newly discovered novel approach towards water splitting by light (c) develop novel environmentally benign catalytic reactions involving O-H, C-H and other bonds, such as anti-Markovnikov hydration of alkenes (d) develop unprecedented asymmetric catalysis using chiral cooperating ligands (e) develop new CO2 chemistry, including its hydrogenation to methanol and photolytic splitting to CO and O2. The research is expected to lead to novel catalysis, of importance to environment and sustainable energy.
Max ERC Funding
1 912 018 €
Duration
Start date: 2010-04-01, End date: 2015-03-31