Project acronym 100 Archaic Genomes
Project Genome sequences from extinct hominins
Researcher (PI) Svante PaeaeBO
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Summary
Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Max ERC Funding
2 350 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Country Czechia
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 2D4D
Project Disruptive Digitalization for Decarbonization
Researcher (PI) Elena Verdolini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI BRESCIA
Country Italy
Call Details Starting Grant (StG), SH2, ERC-2019-STG
Summary By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Summary
By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Max ERC Funding
1 498 375 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 2DMATER
Project Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion
Researcher (PI) Xinliang Feng
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Summary
"Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Country Germany
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28