Project acronym 2D4D
Project Disruptive Digitalization for Decarbonization
Researcher (PI) Elena Verdolini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI BRESCIA
Country Italy
Call Details Starting Grant (StG), SH2, ERC-2019-STG
Summary By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Summary
By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Max ERC Funding
1 498 375 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym 2DMATER
Project Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion
Researcher (PI) Xinliang Feng
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Summary
"Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Country Germany
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Country United Kingdom
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym 2STEPPARKIN
Project A novel two-step model for neurodegeneration in Parkinson’s disease
Researcher (PI) Emi Nagoshi
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Max ERC Funding
1 518 960 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Country Ireland
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3D-FNPWriting
Project Unprecedented spatial control of porosity and functionality in nanoporous membranes through 3D printing and microscopy for polymer writing
Researcher (PI) Annette ANDRIEU-BRUNSEN
Host Institution (HI) TECHNISCHE UNIVERSITAT DARMSTADT
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Summary
Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Max ERC Funding
1 499 844 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3D-OA-HISTO
Project Development of 3D Histopathological Grading of Osteoarthritis
Researcher (PI) Simo Jaakko Saarakkala
Host Institution (HI) OULUN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Summary
"Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31