Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 4DVIDEO
Project 4DVideo: 4D spatio-temporal modeling of real-world events from video streams
Researcher (PI) Marc Pollefeys
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Summary
The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Max ERC Funding
1 757 422 €
Duration
Start date: 2008-08-01, End date: 2013-11-30
Project acronym aidsocpro
Project Aiding Social Protection: the political economy of externally financing social policy in developing countries
Researcher (PI) Andrew Martin Fischer
Host Institution (HI) ERASMUS UNIVERSITEIT ROTTERDAM
Call Details Starting Grant (StG), SH2, ERC-2014-STG
Summary This research proposal explores the political economy of international development assistance (aid) directed towards social expenditures, examined through the lens of a particular financial quandary that has been ignored in the literature despite having important economic and political repercussions. The quandary is that aid cannot be directly spent on expenditures denominated in domestic currency. Instead, aid needs to be first converted into domestic currency whereas the foreign exchange provided is used for other purposes, resulting in a process prone to complex politics regarding domestic monetary policy and spending commitments.
The implications require a serious rethink of many of the accepted premises in the political economy of aid and related literatures.
It is urgent to engage in this rethinking given tensions between two dynamics in the current global political economy: a tightening financial cycle facing developing countries versus an increasing emphasis in international development agendas of directing aid towards social expenditures. The financial quandary might exacerbate these tensions, restricting recipient government policy space despite donor commitments of respecting national ownership.
The proposed research examines these implications through the emerging social protection agenda among donors, which serves as an ideal policy case given that social protection expenditures are almost entirely based on domestic currency. This will be researched through a mixed-method comparative case study of six developing countries, combining quantitative analysis of balance of payments and financing constraints with qualitative process tracing based on elite interviews and documentary research. The objective is to re-orient our thinking on these issues for a deeper appreciation of the systemic political and economic challenges facing global redistribution towards poorer countries, particularly with respect to the forthcoming Sustainable Development Goals.
Summary
This research proposal explores the political economy of international development assistance (aid) directed towards social expenditures, examined through the lens of a particular financial quandary that has been ignored in the literature despite having important economic and political repercussions. The quandary is that aid cannot be directly spent on expenditures denominated in domestic currency. Instead, aid needs to be first converted into domestic currency whereas the foreign exchange provided is used for other purposes, resulting in a process prone to complex politics regarding domestic monetary policy and spending commitments.
The implications require a serious rethink of many of the accepted premises in the political economy of aid and related literatures.
It is urgent to engage in this rethinking given tensions between two dynamics in the current global political economy: a tightening financial cycle facing developing countries versus an increasing emphasis in international development agendas of directing aid towards social expenditures. The financial quandary might exacerbate these tensions, restricting recipient government policy space despite donor commitments of respecting national ownership.
The proposed research examines these implications through the emerging social protection agenda among donors, which serves as an ideal policy case given that social protection expenditures are almost entirely based on domestic currency. This will be researched through a mixed-method comparative case study of six developing countries, combining quantitative analysis of balance of payments and financing constraints with qualitative process tracing based on elite interviews and documentary research. The objective is to re-orient our thinking on these issues for a deeper appreciation of the systemic political and economic challenges facing global redistribution towards poorer countries, particularly with respect to the forthcoming Sustainable Development Goals.
Max ERC Funding
1 459 529 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AIDSRIGHTS
Project "Rights, Responsibilities, and the HIV/AIDS Pandemic: Global Impact on Moral and Political Subjectivity"
Researcher (PI) Jarrett Zigon
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary "This project will undertake a transnational, multi-sited ethnographic study of moral and political subjectivity in HIV/AIDS prevention and treatment programs from the perspective of socio-cultural anthropology. The main research question is: what kinds of politico-moral persons are constituted in institutional contexts that combine human rights and personal responsibility approaches to health, and how these kinds of subjectivities relate to local, national, and global forms of the politico-moral represented in health policies? In particular, this research will be carried out in Indonesia (Jakarta and Bali), South Africa (Western Cape), USA (New York City), and various locations throughout Eastern Europe in HIV/AIDS programs and institutions that increasingly combine human rights and personal responsibility approaches to treatment and prevention. This project is the first anthropological research on health governance done on a global scale. Until now most anthropological studies have focused on one health program in one location without simultaneously studying similar processes in comparable contexts in other parts of the world. In contrast, this project will take a global perspective on the relationship between health issues, morality, and governance by doing transnational multi-sited research. This project will significantly contribute to the current anthropological focus on bio-citizenship and push it in new directions, resulting in a new anthropological theory of global bio-political governance and global politico-moral subjectivities. This theory will describe and explain recent transnational processes of shaping particular kinds of politico-moral subjectivities through health initiatives. By doing research in comparable world areas this project will significantly contribute to the development of a theory of politico-moral governance with global reach."
Summary
"This project will undertake a transnational, multi-sited ethnographic study of moral and political subjectivity in HIV/AIDS prevention and treatment programs from the perspective of socio-cultural anthropology. The main research question is: what kinds of politico-moral persons are constituted in institutional contexts that combine human rights and personal responsibility approaches to health, and how these kinds of subjectivities relate to local, national, and global forms of the politico-moral represented in health policies? In particular, this research will be carried out in Indonesia (Jakarta and Bali), South Africa (Western Cape), USA (New York City), and various locations throughout Eastern Europe in HIV/AIDS programs and institutions that increasingly combine human rights and personal responsibility approaches to treatment and prevention. This project is the first anthropological research on health governance done on a global scale. Until now most anthropological studies have focused on one health program in one location without simultaneously studying similar processes in comparable contexts in other parts of the world. In contrast, this project will take a global perspective on the relationship between health issues, morality, and governance by doing transnational multi-sited research. This project will significantly contribute to the current anthropological focus on bio-citizenship and push it in new directions, resulting in a new anthropological theory of global bio-political governance and global politico-moral subjectivities. This theory will describe and explain recent transnational processes of shaping particular kinds of politico-moral subjectivities through health initiatives. By doing research in comparable world areas this project will significantly contribute to the development of a theory of politico-moral governance with global reach."
Max ERC Funding
1 499 370 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym AIME
Project An Inquiry into Modes of Existence
Researcher (PI) Bruno Latour
Host Institution (HI) FONDATION NATIONALE DES SCIENCES POLITIQUES
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary "AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Summary
"AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Max ERC Funding
1 334 720 €
Duration
Start date: 2011-09-01, End date: 2015-06-30
Project acronym ALDof 2DTMDs
Project Atomic layer deposition of two-dimensional transition metal dichalcogenide nanolayers
Researcher (PI) Ageeth Bol
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary Two-dimensional transition metal dichalcogenides (2D-TMDs) are an exciting class of new materials. Their ultrathin body, optical band gap and unusual spin and valley polarization physics make them very promising candidates for a vast new range of (opto-)electronic applications. So far, most experimental work on 2D-TMDs has been performed on exfoliated flakes made by the ‘Scotch tape’ technique. The major next challenge is the large-area synthesis of 2D-TMDs by a technique that ultimately can be used for commercial device fabrication.
Building upon pure 2D-TMDs, even more functionalities can be gained from 2D-TMD alloys and heterostructures. Theoretical work on these derivates reveals exciting new phenomena, but experimentally this field is largely unexplored due to synthesis technique limitations.
The goal of this proposal is to combine atomic layer deposition with plasma chemistry to create a novel surface-controlled, industry-compatible synthesis technique that will make large area 2D-TMDs, 2D-TMD alloys and 2D-TMD heterostructures a reality. This innovative approach will enable systematic layer dependent studies, likely revealing exciting new properties, and provide integration pathways for a multitude of applications.
Atomistic simulations will guide the process development and, together with in- and ex-situ analysis, increase the understanding of the surface chemistry involved. State-of-the-art high resolution transmission electron microscopy will be used to study the alloying process and the formation of heterostructures. Luminescence spectroscopy and electrical characterization will reveal the potential of the synthesized materials for (opto)-electronic applications.
The synergy between the excellent background of the PI in 2D materials for nanoelectronics and the group’s leading expertise in ALD and plasma science is unique and provides an ideal stepping stone to develop the synthesis of large-area 2D-TMDs and derivatives.
Summary
Two-dimensional transition metal dichalcogenides (2D-TMDs) are an exciting class of new materials. Their ultrathin body, optical band gap and unusual spin and valley polarization physics make them very promising candidates for a vast new range of (opto-)electronic applications. So far, most experimental work on 2D-TMDs has been performed on exfoliated flakes made by the ‘Scotch tape’ technique. The major next challenge is the large-area synthesis of 2D-TMDs by a technique that ultimately can be used for commercial device fabrication.
Building upon pure 2D-TMDs, even more functionalities can be gained from 2D-TMD alloys and heterostructures. Theoretical work on these derivates reveals exciting new phenomena, but experimentally this field is largely unexplored due to synthesis technique limitations.
The goal of this proposal is to combine atomic layer deposition with plasma chemistry to create a novel surface-controlled, industry-compatible synthesis technique that will make large area 2D-TMDs, 2D-TMD alloys and 2D-TMD heterostructures a reality. This innovative approach will enable systematic layer dependent studies, likely revealing exciting new properties, and provide integration pathways for a multitude of applications.
Atomistic simulations will guide the process development and, together with in- and ex-situ analysis, increase the understanding of the surface chemistry involved. State-of-the-art high resolution transmission electron microscopy will be used to study the alloying process and the formation of heterostructures. Luminescence spectroscopy and electrical characterization will reveal the potential of the synthesized materials for (opto)-electronic applications.
The synergy between the excellent background of the PI in 2D materials for nanoelectronics and the group’s leading expertise in ALD and plasma science is unique and provides an ideal stepping stone to develop the synthesis of large-area 2D-TMDs and derivatives.
Max ERC Funding
1 968 709 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym ALPROS
Project Artificial Life-like Processive Systems
Researcher (PI) Roeland Johannes Maria Nolte
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), PE5, ERC-2011-ADG_20110209
Summary Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Summary
Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Max ERC Funding
1 603 699 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym aLzINK
Project Alzheimer's disease and Zinc: the missing link ?
Researcher (PI) Christelle Sandrine Florence HUREAU-SABATER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Summary
Alzheimer's disease (AD) is one of the most serious diseases mankind is now facing as its social and economical impacts are increasing fastly. AD is very complex and the amyloid-β (Aβ) peptide as well as metallic ions (mainly copper and zinc) have been linked to its aetiology. While the deleterious impact of Cu is widely acknowledged, intervention of Zn is certain but still needs to be figured out.
The main objective of the present proposal, which is strongly anchored in the bio-inorganic chemistry field at interface with spectroscopy and biochemistry, is to design, synthesize and study new drug candidates (ligands L) capable of (i) targeting Cu(II) bound to Aβ within the synaptic cleft, where Zn is co-localized and ultimately to develop Zn-driven Cu(II) removal from Aβ and (ii) disrupting the aberrant Cu(II)-Aβ interactions involved in ROS production and Aβ aggregation, two deleterious events in AD. The drug candidates will thus have high Cu(II) over Zn selectively to preserve the crucial physiological role of Zn in the neurotransmission process. Zn is always underestimated (if not completely neglected) in current therapeutic approaches targeting Cu(II) despite the known interference of Zn with Cu(II) binding.
To reach this objective, it is absolutely necessary to first understand the metal ions trafficking issues in presence of Aβ alone at a molecular level (i.e. without the drug candidates).This includes: (i) determination of Zn binding site to Aβ, impact on Aβ aggregation and cell toxicity, (ii) determination of the mutual influence of Zn and Cu to their coordination to Aβ, impact on Aβ aggregation, ROS production and cell toxicity.
Methods used will span from organic synthesis to studies of neuronal model cells, with a major contribution of a wide panel of spectroscopic techniques including NMR, EPR, mass spectrometry, fluorescence, UV-Vis, circular-dichroism, X-ray absorption spectroscopy...
Max ERC Funding
1 499 948 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym APOLOGY
Project Political Apologies across Cultures
Researcher (PI) Juliëtte Schaafsma
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT BRABANT
Call Details Consolidator Grant (CoG), SH2, ERC-2015-CoG
Summary In the past decades, there has been a considerable rise in the number of apologies offered by states for injustices and human rights violations. Among transitional justice scholars, there is significant debate about how useful such apologies are. Whereas some have applauded these gestures as an important step in peacemaking processes, others have argued that they may not fit in all cultures and may even be a risky tool for peacemaking. Unfortunately, theorizing and research in the field of transitional justice is still in its infancy and has not systematically addressed questions of cross-cultural variability yet. So, at present, we do not know whether political apologies are a universally viable way to restore justice and harmony. My project addresses this challenge. Using an innovative, interdisciplinary, and multi-method approach with in-depth interviews, (experimental) surveys, and content analyses of apologies, I analyze whether there are universals in how political apologies are valued, expressed, and interpreted or whether this varies as a function of cross-cultural differences in key values (collectivism and individualism) and norms (face and honor). Based on these findings, I build a theoretical framework that will fundamentally advance our understanding of the potential value and role of apologies in transitional justice processes. This project breaks new ground because it is the first to take the difficult step to collect cross-cultural data to examine whether key assumptions regarding political apologies hold across cultures. It is also the first in this area to use a multi-method approach, which makes it possible to take into account the complex reality of political apologies. Combining insights from transitional justice, cross-cultural psychology and anthropology, this project places theorizing on transitional justice on a much firmer footing and paves the way to more cross-culturally valid models to restore justice and promote reconciliation.
Summary
In the past decades, there has been a considerable rise in the number of apologies offered by states for injustices and human rights violations. Among transitional justice scholars, there is significant debate about how useful such apologies are. Whereas some have applauded these gestures as an important step in peacemaking processes, others have argued that they may not fit in all cultures and may even be a risky tool for peacemaking. Unfortunately, theorizing and research in the field of transitional justice is still in its infancy and has not systematically addressed questions of cross-cultural variability yet. So, at present, we do not know whether political apologies are a universally viable way to restore justice and harmony. My project addresses this challenge. Using an innovative, interdisciplinary, and multi-method approach with in-depth interviews, (experimental) surveys, and content analyses of apologies, I analyze whether there are universals in how political apologies are valued, expressed, and interpreted or whether this varies as a function of cross-cultural differences in key values (collectivism and individualism) and norms (face and honor). Based on these findings, I build a theoretical framework that will fundamentally advance our understanding of the potential value and role of apologies in transitional justice processes. This project breaks new ground because it is the first to take the difficult step to collect cross-cultural data to examine whether key assumptions regarding political apologies hold across cultures. It is also the first in this area to use a multi-method approach, which makes it possible to take into account the complex reality of political apologies. Combining insights from transitional justice, cross-cultural psychology and anthropology, this project places theorizing on transitional justice on a much firmer footing and paves the way to more cross-culturally valid models to restore justice and promote reconciliation.
Max ERC Funding
1 917 713 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ARPEMA
Project Anionic redox processes: A transformational approach for advanced energy materials
Researcher (PI) Jean-Marie Tarascon
Host Institution (HI) COLLEGE DE FRANCE
Call Details Advanced Grant (AdG), PE5, ERC-2014-ADG
Summary Redox chemistry provides the fundamental basis for numerous energy-related electrochemical devices, among which Li-ion batteries (LIB) have become the premier energy storage technology for portable electronics and vehicle electrification. Throughout its history, LIB technology has relied on cationic redox reactions as the sole source of energy storage capacity. This is no longer true. In 2013 we demonstrated that Li-driven reversible formation of (O2)n peroxo-groups in new layered oxides led to extraordinary increases in energy storage capacity. This finding, which is receiving worldwide attention, represents a transformational approach for creating advanced energy materials for not only energy storage, but also water splitting applications as both involve peroxo species. However, as is often the case with new discoveries, the fundamental science at work needs to be rationalized and understood. Specifically, what are the mechanisms for ion and electron transport in these Li-driven anionic redox reactions?
To address these seminal questions and to widen the spectrum of materials (transition metal and anion) showing anionic redox chemistry, we propose a comprehensive research program that combines experimental and computational methods. The experimental methods include structural and electrochemical analyses (both ex-situ and in-situ), and computational modeling will be based on first-principles DFT for identifying the fundamental processes that enable anionic redox activity. The knowledge gained from these studies, in combination with our expertise in inorganic synthesis, will enable us to design a new generation of Li-ion battery materials that exhibit substantial increases (20 -30%) in energy storage capacity, with additional impacts on the development of Na-ion batteries and the design of water splitting catalysts, with the feasibility to surpass current water splitting efficiencies via novel (O2)n-based electrocatalysts.
Summary
Redox chemistry provides the fundamental basis for numerous energy-related electrochemical devices, among which Li-ion batteries (LIB) have become the premier energy storage technology for portable electronics and vehicle electrification. Throughout its history, LIB technology has relied on cationic redox reactions as the sole source of energy storage capacity. This is no longer true. In 2013 we demonstrated that Li-driven reversible formation of (O2)n peroxo-groups in new layered oxides led to extraordinary increases in energy storage capacity. This finding, which is receiving worldwide attention, represents a transformational approach for creating advanced energy materials for not only energy storage, but also water splitting applications as both involve peroxo species. However, as is often the case with new discoveries, the fundamental science at work needs to be rationalized and understood. Specifically, what are the mechanisms for ion and electron transport in these Li-driven anionic redox reactions?
To address these seminal questions and to widen the spectrum of materials (transition metal and anion) showing anionic redox chemistry, we propose a comprehensive research program that combines experimental and computational methods. The experimental methods include structural and electrochemical analyses (both ex-situ and in-situ), and computational modeling will be based on first-principles DFT for identifying the fundamental processes that enable anionic redox activity. The knowledge gained from these studies, in combination with our expertise in inorganic synthesis, will enable us to design a new generation of Li-ion battery materials that exhibit substantial increases (20 -30%) in energy storage capacity, with additional impacts on the development of Na-ion batteries and the design of water splitting catalysts, with the feasibility to surpass current water splitting efficiencies via novel (O2)n-based electrocatalysts.
Max ERC Funding
2 249 196 €
Duration
Start date: 2015-10-01, End date: 2020-09-30