Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Country United Kingdom
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Country United Kingdom
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ADREEM
Project Adding Another Dimension – Arrays of 3D Bio-Responsive Materials
Researcher (PI) Mark Bradley
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Summary
This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Max ERC Funding
2 310 884 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym APPLAUSE
Project Adolescent Precursors to Psychiatric Disorders – Learing from Analysis of User-Service Engagement
Researcher (PI) Sara Evans
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Country United Kingdom
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Summary
APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Max ERC Funding
1 499 948 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BARCODE
Project The use of genetic profiling to guide prostate cancer targeted screening and cancer care
Researcher (PI) Rosalind Anne Eeles
Host Institution (HI) THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
Country United Kingdom
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Summary
"Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Max ERC Funding
2 499 123 €
Duration
Start date: 2014-10-01, End date: 2019-09-30