Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AdOMiS
Project Adaptive Optical Microscopy Systems: Unifying theory, practice and applications
Researcher (PI) Martin BOOTH
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.
Summary
Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.
Max ERC Funding
3 234 789 €
Duration
Start date: 2016-09-01, End date: 2022-02-28
Project acronym BABYRHYTHM
Project Oscillatory Rhythmic Entrainment and the Foundations of Language Acquisition
Researcher (PI) Usha Claire GOSWAMI
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Summary
Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Max ERC Funding
2 614 275 €
Duration
Start date: 2016-09-01, End date: 2022-08-31
Project acronym BAYNET
Project Bayesian Networks and Non-Rational Expectations
Researcher (PI) Ran SPIEGLER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary "This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Summary
"This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Max ERC Funding
1 379 288 €
Duration
Start date: 2016-07-01, End date: 2022-06-30
Project acronym BEEHIVE
Project Bridging the Evolution and Epidemiology of HIV in Europe
Researcher (PI) Christopher Fraser
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Summary
The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Max ERC Funding
2 499 739 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BESTDECISION
Project "Behavioural Economics and Strategic Decision Making: Theory, Empirics, and Experiments"
Researcher (PI) Vincent Paul Crawford
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Summary
"I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Max ERC Funding
1 985 373 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BM
Project Becoming Muslim: Conversion to Islam and Islamisation in Eastern Ethiopia
Researcher (PI) Timothy Insoll
Host Institution (HI) THE UNIVERSITY OF EXETER
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary "
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Summary
"
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Max ERC Funding
1 031 105 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym C-SENSE
Project Exploiting low dimensional models in sensing, computation and signal processing
Researcher (PI) Michael DAVIES
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary The aim of this project is to develop the next generation of compressive and computational sensing and processing techniques.
The ability to identify and exploit good signal representations is pivotal in many signal and data processing tasks. During the last decade sparse representations have provided stunning performance gains for applications such as: imaging coding, computer vision, super-resolution microscopy and most recently in MRI, achieving many-fold acceleration through compressed sensing (CS).
However in most real world sensing it is generally not possible to fully adopt the random sampling strategies advocated by CS. Systems are often nonlinear, measurements have limited dynamic range, noise is rarely Gaussian and reconstruction is not always the final goal. Furthermore, iterative reconstruction techniques are often not adopted in commercial imaging systems as they typically incur at least an order of magnitude more computation than traditional techniques. Thus there is a real need for a new framework for generalized computationally accelerated sensing and processing techniques.
The research proposed here will build on the PIs recent work in this area and will develop and analyse a much richer class of hierarchical low dimensional signal models, accommodating everything from physical laws to data-driven models such as deep neural networks. It will provide quantitative guidance for system design and address sensing tasks beyond reconstruction including detection, classification and statistical estimation. It will also exploit low dimensional structure to reduce computational cost as well as estimation accuracy, challenging the notion that exploiting prior information must come at a computational cost.
This research will result in a new generation of data-driven, physics-aware and task-orientated sensing systems in application domains such as advanced radar, CT and MR imaging and emerging sensing modalities such as multispectral time-of-flight cameras.
Summary
The aim of this project is to develop the next generation of compressive and computational sensing and processing techniques.
The ability to identify and exploit good signal representations is pivotal in many signal and data processing tasks. During the last decade sparse representations have provided stunning performance gains for applications such as: imaging coding, computer vision, super-resolution microscopy and most recently in MRI, achieving many-fold acceleration through compressed sensing (CS).
However in most real world sensing it is generally not possible to fully adopt the random sampling strategies advocated by CS. Systems are often nonlinear, measurements have limited dynamic range, noise is rarely Gaussian and reconstruction is not always the final goal. Furthermore, iterative reconstruction techniques are often not adopted in commercial imaging systems as they typically incur at least an order of magnitude more computation than traditional techniques. Thus there is a real need for a new framework for generalized computationally accelerated sensing and processing techniques.
The research proposed here will build on the PIs recent work in this area and will develop and analyse a much richer class of hierarchical low dimensional signal models, accommodating everything from physical laws to data-driven models such as deep neural networks. It will provide quantitative guidance for system design and address sensing tasks beyond reconstruction including detection, classification and statistical estimation. It will also exploit low dimensional structure to reduce computational cost as well as estimation accuracy, challenging the notion that exploiting prior information must come at a computational cost.
This research will result in a new generation of data-driven, physics-aware and task-orientated sensing systems in application domains such as advanced radar, CT and MR imaging and emerging sensing modalities such as multispectral time-of-flight cameras.
Max ERC Funding
2 212 048 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CANDICE
Project CEREBRAL ASYMMETRY: NEW DIRECTIONS IN CORRELATES AND ETIOLOGY
Researcher (PI) Dorothy Vera Margaret BISHOP
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary "150 years after Broca's seminal statement "Nous parlons avec l'hémisphère gauche" we still do not know how or why we have this bias. I propose that by studying cases of impaired language development and combining genetic and neuropsychological approaches we will be able to make a leap forward in our understanding of the quintessentially human characteristic of functional cerebral asymmetry. I argue that contradictory findings in the literature may be reconciled if we adopt a novel approach to cerebral asymmetry. In particular, I propose a network efficiency hypothesis which maintains that optimal development depends on organisation of key language functions within the same cerebral hemisphere.
In project A, I will combine behavioural measures with functional transcranial Doppler ultrasound (fTCD) measures of blood flow and functional magnetic resonance imaging (fMRI) to identify individual differences in patterns of dissociation between language functions in lateralisation. In project B I will test the prediction that risk for language and literacy impairment is increased if different language functions are represented in opposite hemispheres. For project C, simulations of predictions from genetic models will be tested using data on twin-cotwin similarity in language lateralisation. Project D will test a 'double hit' genetic model that predicts that neurodevelopmental abnormalities, including language deficits and inconsistent asymmetry, arise when there is more than one hit on a functional brain circuit. For this study we will use an existing sample of individuals already known to have one 'hit' on the neuroligin-neurexin circuit, viz people with an additional dose of neuroligin caused by an extra sex chromosome. Project E will focus on individuals with inconsistent patterns of language laterality and will look for rare genetic mutations and structural rearrangements associated with a departure from consistent left hemisphere language."
Summary
"150 years after Broca's seminal statement "Nous parlons avec l'hémisphère gauche" we still do not know how or why we have this bias. I propose that by studying cases of impaired language development and combining genetic and neuropsychological approaches we will be able to make a leap forward in our understanding of the quintessentially human characteristic of functional cerebral asymmetry. I argue that contradictory findings in the literature may be reconciled if we adopt a novel approach to cerebral asymmetry. In particular, I propose a network efficiency hypothesis which maintains that optimal development depends on organisation of key language functions within the same cerebral hemisphere.
In project A, I will combine behavioural measures with functional transcranial Doppler ultrasound (fTCD) measures of blood flow and functional magnetic resonance imaging (fMRI) to identify individual differences in patterns of dissociation between language functions in lateralisation. In project B I will test the prediction that risk for language and literacy impairment is increased if different language functions are represented in opposite hemispheres. For project C, simulations of predictions from genetic models will be tested using data on twin-cotwin similarity in language lateralisation. Project D will test a 'double hit' genetic model that predicts that neurodevelopmental abnormalities, including language deficits and inconsistent asymmetry, arise when there is more than one hit on a functional brain circuit. For this study we will use an existing sample of individuals already known to have one 'hit' on the neuroligin-neurexin circuit, viz people with an additional dose of neuroligin caused by an extra sex chromosome. Project E will focus on individuals with inconsistent patterns of language laterality and will look for rare genetic mutations and structural rearrangements associated with a departure from consistent left hemisphere language."
Max ERC Funding
2 497 907 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CAUSCOG
Project Tool Use As A Tool For Understanding Causal Cognition In Humans And Corvids
Researcher (PI) Nicola Susan Clayton
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Our ability to understand causality is at the very core of modern civilization. We see potential antecedents of this understanding in some non-human animals, notably apes and corvids. To date, behaviour thought to be indicative of causal understanding, particularly tool-use, has been mainly described as a phenomenon rather than studied as a mechanism and thus suffers from the lack of an experimentally-tested theoretical framework and deconstructive analysis. This significantly constrains our progress in answering key questions such as: (1) how do humans understand the physical world and solve problems? (2) what other ways of understanding causality and problem solving has evolution produced? (3) what selective pressures lead to the evolution of causal cognition? Each of these questions constitutes an area where there exists enormous potential to advance cognitive science. The overarching aim is to create a coherent, experimentally-tested, theoretical framework of the cognitive mechanisms underlying causal knowledge in corvids and humans, both young and adult. The advantage of our approach is that we will study two types of mind that have very different neural machineries and investigate the similarities and differences in their cognitive processes. We will create a sufficient level of abstraction to develop a deep theory of cognition, something that would not be possible by studying only a single species and its close evolutionary relatives. One of the most exciting aspects is that we will begin to map the ‘universal mind’ (i.e. the cognitive mechanisms that are repeatedly created by convergent evolution) to provide a quantum leap in our understanding of cognition. Finally, by discovering evolved biases in children’s learning and reasoning mechanisms we will pave the way for new teaching methods that boost learning in the classroom by appealing to the way children naturally understand the world."
Summary
"Our ability to understand causality is at the very core of modern civilization. We see potential antecedents of this understanding in some non-human animals, notably apes and corvids. To date, behaviour thought to be indicative of causal understanding, particularly tool-use, has been mainly described as a phenomenon rather than studied as a mechanism and thus suffers from the lack of an experimentally-tested theoretical framework and deconstructive analysis. This significantly constrains our progress in answering key questions such as: (1) how do humans understand the physical world and solve problems? (2) what other ways of understanding causality and problem solving has evolution produced? (3) what selective pressures lead to the evolution of causal cognition? Each of these questions constitutes an area where there exists enormous potential to advance cognitive science. The overarching aim is to create a coherent, experimentally-tested, theoretical framework of the cognitive mechanisms underlying causal knowledge in corvids and humans, both young and adult. The advantage of our approach is that we will study two types of mind that have very different neural machineries and investigate the similarities and differences in their cognitive processes. We will create a sufficient level of abstraction to develop a deep theory of cognition, something that would not be possible by studying only a single species and its close evolutionary relatives. One of the most exciting aspects is that we will begin to map the ‘universal mind’ (i.e. the cognitive mechanisms that are repeatedly created by convergent evolution) to provide a quantum leap in our understanding of cognition. Finally, by discovering evolved biases in children’s learning and reasoning mechanisms we will pave the way for new teaching methods that boost learning in the classroom by appealing to the way children naturally understand the world."
Max ERC Funding
2 164 833 €
Duration
Start date: 2014-02-01, End date: 2019-01-31