Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Country United Kingdom
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym APPLAUSE
Project Adolescent Precursors to Psychiatric Disorders – Learing from Analysis of User-Service Engagement
Researcher (PI) Sara Evans
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Country United Kingdom
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Summary
APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Max ERC Funding
1 499 948 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CancerExomesInPlasma
Project Non-invasive genomic analysis of cancer using circulating tumour DNA
Researcher (PI) Nitzan Rosenfeld
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Summary
Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Max ERC Funding
1 769 380 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym CLOC
Project Cultured Liver Organoids for Investigation and Treatment of Inherited Cholestatic Diseases
Researcher (PI) Paul Gissen
Host Institution (HI) University College London
Country United Kingdom
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Summary
"Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym COMPLEXITY
Project Understanding the Complexity of Modern Financial Systems
Researcher (PI) Vikrant Vig
Host Institution (HI) LONDON BUSINESS SCHOOL
Country United Kingdom
Call Details Starting Grant (StG), SH1, ERC-2015-STG
Summary The modern financial system has undergone immense transformation in recent years and is far more complex than ever before. In lockstep, financial regulation has also become more complex. This research proposal attempts to improve our understanding of potential drivers of this complexity and the implications of this change on the allocation of resources.
Taking a positive rather than a normative approach, I will analyse post-crisis changes at both the micro- and at the macro-levels to create a broader understanding of complexities in the current financial system. In order to do so, I will employ a set of advanced research designs, as well as a uniquely assembled micro-level dataset covering state and privately owned financial institutions in Asia, Africa, South America and Europe.
This project will focus on two interconnected areas of research: 1) Organisation of Credit, 2) Financial regulation in a complex environment. The aim of this project is to create a sustainable framework for the study of post-crisis financial systems, and to shape the current debate on the future of post-crisis financial structures and the development of policy in this area. Not only will this research have a considerable impact on our understanding of financial systems, it will also impact fields beyond finance, like Organisational Economics, Industrial Organisation and Development Economics.
Summary
The modern financial system has undergone immense transformation in recent years and is far more complex than ever before. In lockstep, financial regulation has also become more complex. This research proposal attempts to improve our understanding of potential drivers of this complexity and the implications of this change on the allocation of resources.
Taking a positive rather than a normative approach, I will analyse post-crisis changes at both the micro- and at the macro-levels to create a broader understanding of complexities in the current financial system. In order to do so, I will employ a set of advanced research designs, as well as a uniquely assembled micro-level dataset covering state and privately owned financial institutions in Asia, Africa, South America and Europe.
This project will focus on two interconnected areas of research: 1) Organisation of Credit, 2) Financial regulation in a complex environment. The aim of this project is to create a sustainable framework for the study of post-crisis financial systems, and to shape the current debate on the future of post-crisis financial structures and the development of policy in this area. Not only will this research have a considerable impact on our understanding of financial systems, it will also impact fields beyond finance, like Organisational Economics, Industrial Organisation and Development Economics.
Max ERC Funding
1 498 947 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym Coupled gene circuit
Project Dynamics, noise, and coupling in gene circuit modules
Researcher (PI) James Charles Wallace Locke
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Summary
Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Max ERC Funding
1 499 571 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DYNAMICSS
Project Labour market dynamics and optimal policies
Researcher (PI) Camille Gregoire Alexis Landais
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Country United Kingdom
Call Details Starting Grant (StG), SH1, ERC-2015-STG
Summary From pension reforms to UI extensions, the optimal tax and program design literature is often ill-equipped to provide clear guidance in policy debates on the reform of social insurance and tax-and-benefit systems. The reason is that this literature is mostly focused on static settings, while these programs are inherently dynamic: they specify a schedule of tax and benefits that is time or state dependent and they affect individuals’ decisions throughout their lifetime.
DYNAMICSS will offer a simple and general approach to the analysis of optimal dynamic policies that connects to the data. The key idea of DYNAMICSS is to extend the sufficient statistics (SS) approach to dynamic settings and characterize the full time profile, rather than the average generosity, of social insurance and transfer policies. By expressing optimal policy as a function of a limited set of statistics, the SS approach has the advantage of making clear the trade-offs implied in optimal tax or benefit formulae and of tightly integrating the theory and the empirics of optimal policy analysis, to offer robust policy guidance.
DYNAMICSS will use unique administrative data and cutting-edge econometric techniques to exploit compelling variations in policy profiles and offer significant contributions to the empirical analysis of dynamic behavioural responses to policies. A central contribution will be to create a unique measure of consumption expenditures based on leveraging complete administrative information on income, transfers and wealth to offer ground-breaking evidence of the effect of social insurance on consumption dynamics.
Part I will use and extend the SS framework to analyse the optimal time profile of UI benefits. Part II will develop this approach for analysing the optimal design of retirement pension systems. Part III will address optimal family policies with a focus on understanding the different dynamics of men and women in the labour market, and exploring the role of cultural norm
Summary
From pension reforms to UI extensions, the optimal tax and program design literature is often ill-equipped to provide clear guidance in policy debates on the reform of social insurance and tax-and-benefit systems. The reason is that this literature is mostly focused on static settings, while these programs are inherently dynamic: they specify a schedule of tax and benefits that is time or state dependent and they affect individuals’ decisions throughout their lifetime.
DYNAMICSS will offer a simple and general approach to the analysis of optimal dynamic policies that connects to the data. The key idea of DYNAMICSS is to extend the sufficient statistics (SS) approach to dynamic settings and characterize the full time profile, rather than the average generosity, of social insurance and transfer policies. By expressing optimal policy as a function of a limited set of statistics, the SS approach has the advantage of making clear the trade-offs implied in optimal tax or benefit formulae and of tightly integrating the theory and the empirics of optimal policy analysis, to offer robust policy guidance.
DYNAMICSS will use unique administrative data and cutting-edge econometric techniques to exploit compelling variations in policy profiles and offer significant contributions to the empirical analysis of dynamic behavioural responses to policies. A central contribution will be to create a unique measure of consumption expenditures based on leveraging complete administrative information on income, transfers and wealth to offer ground-breaking evidence of the effect of social insurance on consumption dynamics.
Part I will use and extend the SS framework to analyse the optimal time profile of UI benefits. Part II will develop this approach for analysing the optimal design of retirement pension systems. Part III will address optimal family policies with a focus on understanding the different dynamics of men and women in the labour market, and exploring the role of cultural norm
Max ERC Funding
1 049 855 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym ECOFLAM
Project The Impact of Plant Evolution on Fire Behaviour in Ancient Ecosystems
Researcher (PI) Claire Michelle Belcher
Host Institution (HI) THE UNIVERSITY OF EXETER
Country United Kingdom
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Summary
Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Max ERC Funding
1 519 640 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym EMF-FEIM
Project Empirical Macro-Finance and the Financial Economics of Insurance Markets
Researcher (PI) Ralph Koijen
Host Institution (HI) LONDON BUSINESS SCHOOL
Country United Kingdom
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Summary
"My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Max ERC Funding
1 077 765 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym EPITOOLS
Project Chemical biology approaches to unraveling the histone code
Researcher (PI) Akane Kawamura
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Country United Kingdom
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Posttranslational modifications on histones play crucial roles in the epigenetic regulation of eukaryotic gene expression. Chemical modifications that occur on histone tails include acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation. This chemical diversity together with the positions and combinations of these modifications give rise to complex networks of highly controlled gene expression programs. The identification and characterisation of chromatin-associated proteins (or epigenetic regulators) in recent years has advanced our understanding of the significance of these histone modifications and the regulatory outcomes in development and in disease.
The project aims to generate new classes of highly selective and potent chemical probes for epigenetic regulators, focusing on enzymes and proteins associated with methyl-lysine marks. A novel modified peptide-based discovery platform, which combines molecular, chemical, biophysical and cellular techniques, will be developed and applied. These chemical probes will be useful for biological and biomedical research, and will serve as potential starting points for therapeutic epigenetic intervention.
Summary
Posttranslational modifications on histones play crucial roles in the epigenetic regulation of eukaryotic gene expression. Chemical modifications that occur on histone tails include acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation. This chemical diversity together with the positions and combinations of these modifications give rise to complex networks of highly controlled gene expression programs. The identification and characterisation of chromatin-associated proteins (or epigenetic regulators) in recent years has advanced our understanding of the significance of these histone modifications and the regulatory outcomes in development and in disease.
The project aims to generate new classes of highly selective and potent chemical probes for epigenetic regulators, focusing on enzymes and proteins associated with methyl-lysine marks. A novel modified peptide-based discovery platform, which combines molecular, chemical, biophysical and cellular techniques, will be developed and applied. These chemical probes will be useful for biological and biomedical research, and will serve as potential starting points for therapeutic epigenetic intervention.
Max ERC Funding
1 758 846 €
Duration
Start date: 2016-04-01, End date: 2021-09-30