Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Country United Kingdom
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ART
Project Aberrant RNA degradation in T-cell leukemia
Researcher (PI) Jan Cools
Host Institution (HI) VIB VZW
Country Belgium
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Summary
"The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Max ERC Funding
1 998 300 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BCM-UPS
Project Dissecting the role of the ubiquitin proteasome system in the pathogenesis and therapy of B-cell malignancies
Researcher (PI) Florian Christoph Bassermann
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Country Germany
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Summary
B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Max ERC Funding
1 973 255 €
Duration
Start date: 2016-09-01, End date: 2022-02-28
Project acronym BeyondtheElite
Project Beyond the Elite: Jewish Daily Life in Medieval Europe
Researcher (PI) Elisheva Baumgarten
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Summary
The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Max ERC Funding
1 941 688 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BoneImplant
Project Monitoring bone healing around endosseous implants: from multiscale modeling to the patient’s bed
Researcher (PI) Guillaume LoIc Haiat
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary Implants are often employed in orthopaedic and dental surgeries. However, risks of failure, which are difficult to anticipate, are still experienced and may have dramatic consequences. Failures are due to degraded bone remodeling at the bone-implant interface, a multiscale phenomenon of an interdisciplinary nature which remains poorly understood. The objective of BoneImplant is to provide a better understanding of the multiscale and multitime mechanisms at work at the bone-implant interface. To do so, BoneImplant aims at studying the evolution of the biomechanical properties of bone tissue around an implant during the remodeling process. A methodology involving combined in vivo, in vitro and in silico approaches is proposed.
New modeling approaches will be developed in close synergy with the experiments. Molecular dynamic computations will be used to understand fluid flow in nanoscopic cavities, a phenomenon determining bone healing process. Generalized continuum theories will be necessary to model bone tissue due to the important strain field around implants. Isogeometric mortar formulation will allow to simulate the bone-implant interface in a stable and efficient manner.
In vivo experiments realized under standardized conditions will be realized on the basis of feasibility studies. A multimodality and multi-physical experimental approach will be carried out to assess the biomechanical properties of newly formed bone tissue as a function of the implant environment. The experimental approach aims at estimating the effective adhesion energy and the potentiality of quantitative ultrasound imaging to assess different biomechanical properties of the interface.
Results will be used to design effective loading clinical procedures of implants and to optimize implant conception, leading to the development of therapeutic and diagnostic techniques. The development of quantitative ultrasonic techniques to monitor implant stability has a potential for industrial transfer.
Summary
Implants are often employed in orthopaedic and dental surgeries. However, risks of failure, which are difficult to anticipate, are still experienced and may have dramatic consequences. Failures are due to degraded bone remodeling at the bone-implant interface, a multiscale phenomenon of an interdisciplinary nature which remains poorly understood. The objective of BoneImplant is to provide a better understanding of the multiscale and multitime mechanisms at work at the bone-implant interface. To do so, BoneImplant aims at studying the evolution of the biomechanical properties of bone tissue around an implant during the remodeling process. A methodology involving combined in vivo, in vitro and in silico approaches is proposed.
New modeling approaches will be developed in close synergy with the experiments. Molecular dynamic computations will be used to understand fluid flow in nanoscopic cavities, a phenomenon determining bone healing process. Generalized continuum theories will be necessary to model bone tissue due to the important strain field around implants. Isogeometric mortar formulation will allow to simulate the bone-implant interface in a stable and efficient manner.
In vivo experiments realized under standardized conditions will be realized on the basis of feasibility studies. A multimodality and multi-physical experimental approach will be carried out to assess the biomechanical properties of newly formed bone tissue as a function of the implant environment. The experimental approach aims at estimating the effective adhesion energy and the potentiality of quantitative ultrasound imaging to assess different biomechanical properties of the interface.
Results will be used to design effective loading clinical procedures of implants and to optimize implant conception, leading to the development of therapeutic and diagnostic techniques. The development of quantitative ultrasonic techniques to monitor implant stability has a potential for industrial transfer.
Max ERC Funding
1 992 154 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BoneMalar
Project Mechanisms of bone marrow sequestration during malaria infection
Researcher (PI) Matthias Marti
Host Institution (HI) UNIVERSITY OF GLASGOW
Country United Kingdom
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Summary
Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Max ERC Funding
2 298 557 €
Duration
Start date: 2016-06-01, End date: 2021-11-30
Project acronym BOOST
Project Biomimetic trick to re-balance Osteblast-Osteoclast loop in osteoporoSis treatment: a Topological and materials driven approach
Researcher (PI) Chiara Silvia Vitale Brovarone
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary One out of 5 people in their fifties will experience a bone fracture due to osteoporosis (OP)-induced fragility in their lifetime. The OP socio-economic burden is dramatic and involves tens of millions of people in the EU, with a steadily increasing number due to population ageing. Current treatments entail drug-therapy coupled with a healthy lifestyle but OP fractures need mechanical fixation to rapidly achieve union: the contribution of biomaterial scientists in this field is still far from taking its expected leading role in cutting-edge research. Bone remodelling is a well-coordinated process of bone resorption by osteoclasts followed by the production of new bone by osteoblasts. This process occurs continuously throughout life in a coupling with a positive balance during growth and negative with ageing, which can result in OP. We believe that an architecture driven stimulation of the osteoclast/osteoblast coupling, with an avant-garde focus on osteoclasts activity, is the key to success in treating unbalanced bone remodelling. We aim to manufacture a scaffold that mimics healthy bone features which will establish a new microenvironment favoring a properly stimulated and active population of osteoclasts and osteoblasts, i.e. a well-balanced bone cooperation. After 5 years we will be able to prove the efficacy of this approach. A benchmark will be set up for OP fracture treatment and for the realization of smart bone substitutes that will be able to locally “trick” aged bone cells stimulating them to act as healthy ones. BOOST results will have an unprecedented impact on the scientific research community, opening a new approach to set up smart, biomimetic strategies to treat aged, unbalanced bone tissues and to reduce OP-associated disabilities and financial burdens.
Summary
One out of 5 people in their fifties will experience a bone fracture due to osteoporosis (OP)-induced fragility in their lifetime. The OP socio-economic burden is dramatic and involves tens of millions of people in the EU, with a steadily increasing number due to population ageing. Current treatments entail drug-therapy coupled with a healthy lifestyle but OP fractures need mechanical fixation to rapidly achieve union: the contribution of biomaterial scientists in this field is still far from taking its expected leading role in cutting-edge research. Bone remodelling is a well-coordinated process of bone resorption by osteoclasts followed by the production of new bone by osteoblasts. This process occurs continuously throughout life in a coupling with a positive balance during growth and negative with ageing, which can result in OP. We believe that an architecture driven stimulation of the osteoclast/osteoblast coupling, with an avant-garde focus on osteoclasts activity, is the key to success in treating unbalanced bone remodelling. We aim to manufacture a scaffold that mimics healthy bone features which will establish a new microenvironment favoring a properly stimulated and active population of osteoclasts and osteoblasts, i.e. a well-balanced bone cooperation. After 5 years we will be able to prove the efficacy of this approach. A benchmark will be set up for OP fracture treatment and for the realization of smart bone substitutes that will be able to locally “trick” aged bone cells stimulating them to act as healthy ones. BOOST results will have an unprecedented impact on the scientific research community, opening a new approach to set up smart, biomimetic strategies to treat aged, unbalanced bone tissues and to reduce OP-associated disabilities and financial burdens.
Max ERC Funding
1 977 500 €
Duration
Start date: 2016-05-01, End date: 2022-06-30