Project acronym BIDECASEOX
Project Bio-inspired Design of Catalysts for Selective Oxidations of C-H and C=C Bonds
Researcher (PI) Miguel Costas Salgueiro
Host Institution (HI) UNIVERSITAT DE GIRONA
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Summary
The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Max ERC Funding
1 299 998 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym CATGOLD
Project ADVANCING GOLD CATALYSIS
Researcher (PI) Antonio María Echavarren Pablos
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Summary
We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Max ERC Funding
2 499 060 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CHIRALLCARBON
Project Chiral Allotropes of Carbon
Researcher (PI) Nazario Martín
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Summary
The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Max ERC Funding
2 235 000 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym E-GAMES
Project Surface Self-Assembled Molecular Electronic Devices: Logic Gates, Memories and Sensors
Researcher (PI) Marta Mas Torrent
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Summary
Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Max ERC Funding
1 499 675 €
Duration
Start date: 2012-12-01, End date: 2018-09-30
Project acronym IPES
Project Innovative Polymers for Energy Storage
Researcher (PI) David Mecerreyes Molero
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary iPes project aims to provide adequate support to Dr. David Mecerreyes (DM) who is at the stage of consolidating an independent research team. During his scientific career, DM has demonstrated creative thinking and excellent capacity to carry out research and going beyond the state of the art. His meritorious record of research, scientific publications (128 ISI articles, h index = 33), project conception, private sector experience, networking ability (participated in 10 European collaborative projects) and capacity for supervising and coordinating a research team are presented in detail in the initial part of the proposal. He recently moved from the private sector to create a new research group at the University of the Basque Country. He is now in an excellent academic position and research environment to commit and be devoted to an ERC frontier research project. DM’s proposal passed to the second stage in the ERC starting grant call of last year. This year the research project has been re-built taking into account his group directions and the detected weak points of last year’s proposal. This is his last opportunity for participating to the ERC starting-grant call.
iPes proposes an innovative research programme at the forefront of polymer chemistry. The proposal goes in depth into the topic of energetic polymers. iPes activities will fully develop the field of polymers for energy storage by using an innovative macromolecular engineering approach generating the ground for future innovations. The main S&T goal is to obtain new polymeric materials, to get an insight into their unique electronic properties, to model the new energetic polymers and to investigate their application in innovative battery prototypes. These technologies are currently dominated by inorganic electrode materials. iPes aims at bringing polymer chemistry to a next level and developing basic knowledge about innovative polymeric materials which may open up new opportunities for Energy Storage.
Summary
iPes project aims to provide adequate support to Dr. David Mecerreyes (DM) who is at the stage of consolidating an independent research team. During his scientific career, DM has demonstrated creative thinking and excellent capacity to carry out research and going beyond the state of the art. His meritorious record of research, scientific publications (128 ISI articles, h index = 33), project conception, private sector experience, networking ability (participated in 10 European collaborative projects) and capacity for supervising and coordinating a research team are presented in detail in the initial part of the proposal. He recently moved from the private sector to create a new research group at the University of the Basque Country. He is now in an excellent academic position and research environment to commit and be devoted to an ERC frontier research project. DM’s proposal passed to the second stage in the ERC starting grant call of last year. This year the research project has been re-built taking into account his group directions and the detected weak points of last year’s proposal. This is his last opportunity for participating to the ERC starting-grant call.
iPes proposes an innovative research programme at the forefront of polymer chemistry. The proposal goes in depth into the topic of energetic polymers. iPes activities will fully develop the field of polymers for energy storage by using an innovative macromolecular engineering approach generating the ground for future innovations. The main S&T goal is to obtain new polymeric materials, to get an insight into their unique electronic properties, to model the new energetic polymers and to investigate their application in innovative battery prototypes. These technologies are currently dominated by inorganic electrode materials. iPes aims at bringing polymer chemistry to a next level and developing basic knowledge about innovative polymeric materials which may open up new opportunities for Energy Storage.
Max ERC Funding
1 430 239 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym MINT
Project Mechanically Interlocked Carbon Nanotubes
Researcher (PI) Emilio Manuel Pérez Álvarez
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "We present a plan to design, synthesize and exploit the properties of mechanically interlocked carbon nanotubes (MINTs).
The scientific aim of the project is to introduce the mechanical bond as a new tool for the derivatization of carbon nanotubes. The mechanical link combines the advantages of covalent and supramolecular modifications, namely: kinetic stability (covalent) and conserved chemical structure (supramolecular). Besides this, its dynamic nature opens up unique opportunities for both fundamental studies and applications.
From a technological point of view, MINTs should have a practical impact in the fields of molecular electronics and molecular machinery. A general modular approach to MINT-based materials for photovoltaic devices and electrochemical sensors is presented. We also expect to exploit the rigidity and low dimensionality of SWNTs to construct molecular machines that utilize them as tracks to move across long distances, which is not possible in small-molecule molecular machines.
To achieve these goals we will exploit the PI’s expertise in the chemical modification of carbon nanostructures, in the self-assembly of electroactive materials and in the synthesis and characterization of mechanically interlocked molecules."
Summary
"We present a plan to design, synthesize and exploit the properties of mechanically interlocked carbon nanotubes (MINTs).
The scientific aim of the project is to introduce the mechanical bond as a new tool for the derivatization of carbon nanotubes. The mechanical link combines the advantages of covalent and supramolecular modifications, namely: kinetic stability (covalent) and conserved chemical structure (supramolecular). Besides this, its dynamic nature opens up unique opportunities for both fundamental studies and applications.
From a technological point of view, MINTs should have a practical impact in the fields of molecular electronics and molecular machinery. A general modular approach to MINT-based materials for photovoltaic devices and electrochemical sensors is presented. We also expect to exploit the rigidity and low dimensionality of SWNTs to construct molecular machines that utilize them as tracks to move across long distances, which is not possible in small-molecule molecular machines.
To achieve these goals we will exploit the PI’s expertise in the chemical modification of carbon nanostructures, in the self-assembly of electroactive materials and in the synthesis and characterization of mechanically interlocked molecules."
Max ERC Funding
1 444 999 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym NANOPUZZLE
Project Multifunctional Magnetic Nanoparticles: Towards Smart Drugs Design
Researcher (PI) Jesús Martínez De La Fuente
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary Nature has been utilizing nanostructures for billion of years. The following two properties, (i) being about the size of typical biological objects and (ii) the possibility of tailoring their properties by changing their size, make nanoparticles attractive for biomedical applications. Using nanoparticles to deliver drugs to tumours offers an attractive possibility to avoid obstacles that occur during conventional systemic drug administration. This NANOPUZZLE project pretends to develop an innovative controlled release methodology, based on hyperthermia and magnetic nanoparticles, as platform for the incorporation of different molecules with different functionalities, to obtain a multifunctional system for cancer treatment and diagnose that leads antitumoral drugs discharge only in the tumoral area. Multifunctional magnetic nanoparticles loaded with a targeting agent (folic acid) and a potent antitumoral drug (doxorubicin) will be prepared. These active molecules will be coupled to the magnetic nanoparticles (MNPs) due to complementary oligonucleotides strands (oligo-zipper). Due to the magnetic properties of these nanomaterials, a local heating induced by an alternating magnetic field, will release the drug in the desired target as a consequence of the DNA denaturation (oligo-unzipping). For this approach, the increase of temperature is only required directly in the nanoparticles and the heating of the surroundings is not needed. For instance, less quantity of nanoparticles and a weaker external magnetic field will be required, avoiding the main inconveniences of conventional hyperthermia treatments. Furthermore, the superparamagnetic properties of these MNPs will also allow their use as contrast agents for tracking and diagnosis by magnetic resonance imaging (MRI).
Summary
Nature has been utilizing nanostructures for billion of years. The following two properties, (i) being about the size of typical biological objects and (ii) the possibility of tailoring their properties by changing their size, make nanoparticles attractive for biomedical applications. Using nanoparticles to deliver drugs to tumours offers an attractive possibility to avoid obstacles that occur during conventional systemic drug administration. This NANOPUZZLE project pretends to develop an innovative controlled release methodology, based on hyperthermia and magnetic nanoparticles, as platform for the incorporation of different molecules with different functionalities, to obtain a multifunctional system for cancer treatment and diagnose that leads antitumoral drugs discharge only in the tumoral area. Multifunctional magnetic nanoparticles loaded with a targeting agent (folic acid) and a potent antitumoral drug (doxorubicin) will be prepared. These active molecules will be coupled to the magnetic nanoparticles (MNPs) due to complementary oligonucleotides strands (oligo-zipper). Due to the magnetic properties of these nanomaterials, a local heating induced by an alternating magnetic field, will release the drug in the desired target as a consequence of the DNA denaturation (oligo-unzipping). For this approach, the increase of temperature is only required directly in the nanoparticles and the heating of the surroundings is not needed. For instance, less quantity of nanoparticles and a weaker external magnetic field will be required, avoiding the main inconveniences of conventional hyperthermia treatments. Furthermore, the superparamagnetic properties of these MNPs will also allow their use as contrast agents for tracking and diagnosis by magnetic resonance imaging (MRI).
Max ERC Funding
1 541 310 €
Duration
Start date: 2010-02-01, End date: 2015-12-31
Project acronym OXLEET
Project Oxidation via low-energy electron transfer. Development of green oxidation methodology via a biomimetic approach
Researcher (PI) Jan Erling Bäckvall
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary Oxidation reactions are of fundamental importance in Nature and are key transformation in organic synthesis. There is currently a need from society to replace waste-producing expensive oxidants by environmentally benign oxidants in industrial oxidation reactions. The aim with the proposed research is to develop novel green oxidation methodology that also involves hydrogen transfer reactions. In the oxidation reactions the goal is to use molecular oxygen (air) or hydrogen peroxide as the oxidants. In the present project new catalytic oxidations via low-energy electron transfer will be developed. The catalytic reactions obtained can be used for racemization of alcohols and amines and for oxygen- and hydrogen peroxide-driven oxidations of various substrates. Examples of some reactions that will be studied are oxidative palladium-catalyzed C-C bond formation and metal-catalyzed C-H oxidation including dehydrogenation reactions with iron and ruthenium. Coupled catalytic systems where electron transfer mediators (ETMs) facilitate electron transfer from the reduced catalyst to molecular oxygen (hydrogen peroxide) will be studied. Highly efficient reoxidation systems will be designed by covalently linking two electron transfer mediators (ETMs). The intramolecular electron transfer in these hybrid ETM catalysts will significantly increase the rate of oxidation reactions. The research will lead to development of more efficient reoxidation systems based on molecular oxygen and hydrogen peroxide, as well as more versatile racemization catalysts for alcohols and amines.
Summary
Oxidation reactions are of fundamental importance in Nature and are key transformation in organic synthesis. There is currently a need from society to replace waste-producing expensive oxidants by environmentally benign oxidants in industrial oxidation reactions. The aim with the proposed research is to develop novel green oxidation methodology that also involves hydrogen transfer reactions. In the oxidation reactions the goal is to use molecular oxygen (air) or hydrogen peroxide as the oxidants. In the present project new catalytic oxidations via low-energy electron transfer will be developed. The catalytic reactions obtained can be used for racemization of alcohols and amines and for oxygen- and hydrogen peroxide-driven oxidations of various substrates. Examples of some reactions that will be studied are oxidative palladium-catalyzed C-C bond formation and metal-catalyzed C-H oxidation including dehydrogenation reactions with iron and ruthenium. Coupled catalytic systems where electron transfer mediators (ETMs) facilitate electron transfer from the reduced catalyst to molecular oxygen (hydrogen peroxide) will be studied. Highly efficient reoxidation systems will be designed by covalently linking two electron transfer mediators (ETMs). The intramolecular electron transfer in these hybrid ETM catalysts will significantly increase the rate of oxidation reactions. The research will lead to development of more efficient reoxidation systems based on molecular oxygen and hydrogen peroxide, as well as more versatile racemization catalysts for alcohols and amines.
Max ERC Funding
1 722 000 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym POLIGHT
Project Polymer-Inorganic Flexible Nanostructured Films for the Control of Light
Researcher (PI) Hernan Miguez García
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary The POLIGHT project will focus on the integration of a series of inorganic nanostructured materials possessing photonic or combined photonic and plasmonic properties into polymeric films, providing a significant advance with respect to current state of the art in flexible photonics. These highly adaptable films could act either as passive UV-Vis-NIR selective frequency mirrors or filters, or as matrices for light absorbing or optically active species capable of tailoring their optical response. The goal of this project is two-fold. In one aspect, the aim is to fill a currently existing hole in the field of materials for radiation protection, which is the absence of highly flexible and adaptable films in which selected ranges of the electromagnetic spectrum wavelengths can be sharply blocked or allowed to pass depending on the different foreseen applications. In another, the POLIGHT project seeks to go one step beyond in the integration of absorbing and emitting nanomaterials into simple flexible polymeric matrices by including hierarchically structured photonic lattices that provide fine tuning of the optical properties of these hybrid ensembles. This will be achieved by means of enhanced matter-radiation interactions that result from field localization effects at specific resonant modes. The opportunity arises as a result of the recent development of a series of robust inorganic photonic structures that present interconnected porous networks susceptible of hosting polymers and thus inheriting their mechanical properties.
Summary
The POLIGHT project will focus on the integration of a series of inorganic nanostructured materials possessing photonic or combined photonic and plasmonic properties into polymeric films, providing a significant advance with respect to current state of the art in flexible photonics. These highly adaptable films could act either as passive UV-Vis-NIR selective frequency mirrors or filters, or as matrices for light absorbing or optically active species capable of tailoring their optical response. The goal of this project is two-fold. In one aspect, the aim is to fill a currently existing hole in the field of materials for radiation protection, which is the absence of highly flexible and adaptable films in which selected ranges of the electromagnetic spectrum wavelengths can be sharply blocked or allowed to pass depending on the different foreseen applications. In another, the POLIGHT project seeks to go one step beyond in the integration of absorbing and emitting nanomaterials into simple flexible polymeric matrices by including hierarchically structured photonic lattices that provide fine tuning of the optical properties of these hybrid ensembles. This will be achieved by means of enhanced matter-radiation interactions that result from field localization effects at specific resonant modes. The opportunity arises as a result of the recent development of a series of robust inorganic photonic structures that present interconnected porous networks susceptible of hosting polymers and thus inheriting their mechanical properties.
Max ERC Funding
1 497 730 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym SPINMOL
Project Magnetic Molecules and Hybrid Materials for Molecular Spintronics
Researcher (PI) Eugenio Coronado
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary In this project we intend to design new magnetic molecules and new classes of magnetic molecular materials which, conveniently nanostructured, can be of interest in molecular spintronics, quantum computing and, in general, in nanomagnetism. The project pretends to cover either the development of molecule-based materials with interesting spintronic properties (molecule-based spintronics), as well as the design and study of magnetic molecules of interest in unimolecular spintronics and quantum computing. The objectives will be the following: - Use of molecule-based magnets for the preparation of multilayered spintronic structures (molecular spin valves) - Design of molecule-based magnetic materials exhibiting multifunctional properties (ferromagnetic superconductors, magnetic multilayers and magnetic/conducting multilayers) - Nanopatterning of magnetic nanostructures on surfaces via a molecular approach. - Chemical control of quantum spin dynamics and decoherence in single-molecule magnets based on magnetic polyoxometalates with the aim of developing qu-bits based on these inorganic molecules. - Positioning and addressing magnetic polyoxometalates on surfaces. An unconventional strategy of this project is the use of purely inorganic building blocks, as well as of inorganic magnetic molecules to design these magnetic materials, instead of using metal-organic molecular systems. This purely inorganic molecular building-block approach will benefit from the robustness of this kind of molecules and materials. Another characteristic feature of this project is the combination of top-down and bottom-up approaches for the processing of the molecules / materials. Thus, the project will exploit the advantage of using lithographic techniques (high throughput, easy scalability, etc.) in combination with the chemical bottom-up design of the molecular system, for the nanopatterning of the materials and the positioning of the molecules on surfaces with nanoscale accuracy.
Summary
In this project we intend to design new magnetic molecules and new classes of magnetic molecular materials which, conveniently nanostructured, can be of interest in molecular spintronics, quantum computing and, in general, in nanomagnetism. The project pretends to cover either the development of molecule-based materials with interesting spintronic properties (molecule-based spintronics), as well as the design and study of magnetic molecules of interest in unimolecular spintronics and quantum computing. The objectives will be the following: - Use of molecule-based magnets for the preparation of multilayered spintronic structures (molecular spin valves) - Design of molecule-based magnetic materials exhibiting multifunctional properties (ferromagnetic superconductors, magnetic multilayers and magnetic/conducting multilayers) - Nanopatterning of magnetic nanostructures on surfaces via a molecular approach. - Chemical control of quantum spin dynamics and decoherence in single-molecule magnets based on magnetic polyoxometalates with the aim of developing qu-bits based on these inorganic molecules. - Positioning and addressing magnetic polyoxometalates on surfaces. An unconventional strategy of this project is the use of purely inorganic building blocks, as well as of inorganic magnetic molecules to design these magnetic materials, instead of using metal-organic molecular systems. This purely inorganic molecular building-block approach will benefit from the robustness of this kind of molecules and materials. Another characteristic feature of this project is the combination of top-down and bottom-up approaches for the processing of the molecules / materials. Thus, the project will exploit the advantage of using lithographic techniques (high throughput, easy scalability, etc.) in combination with the chemical bottom-up design of the molecular system, for the nanopatterning of the materials and the positioning of the molecules on surfaces with nanoscale accuracy.
Max ERC Funding
1 679 700 €
Duration
Start date: 2010-03-01, End date: 2015-02-28