Project acronym CARBONSINK
Project Life beneath the ocean floor: The subsurface sink of carbon in the marine environment
Researcher (PI) Alexandra Turchyn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary "One prominent idea for mitigating global climate change is to remove CO2 from the atmosphere by storing it in fluids in the natural environment; for example dissolved within sediments below the ocean floor or in oceanic crust. This carbon sequestration is popular because it would allow us to place carbon into semi-permanent (on human timescales) storage, ‘buying time’ to wean us from our dependence on carbon-based energy sources. Application of such a mitigation technique presumes knowledge of what will happen to carbon when it is dissolved in various environments. Studies of naturally produced excess dissolved CO2 are, however, equivocal; this lack of knowledge represents a huge deficit in our comprehension of the global carbon cycle and specifically the processes removing carbon from the surface of the planet over geological timescales.
This proposal will resolve the sink for CO2 within marine sediments and oceanic crust. Beneath much of the ocean floor exists the ‘deep biosphere’, microbial populations living largely in the absence of oxygen, consuming organic carbon that has fallen to the sea floor, producing a large excess of dissolved inorganic carbon. This dissolved inorganic carbon can diffuse back to the ocean or can precipitate in situ as carbonate minerals. Previous attempts to quantify the flux of carbon through the deep biosphere focused mostly on studies of sulfur and carbon, and these studies cannot reveal the fate of the produced inorganic carbon. I propose a novel approach to constrain the fate of carbon through the study of the subsurface calcium cycle. Calcium is the element involved in precipitating carbon as in situ carbonate minerals and thus will directly provide the required mass balance to determine the fate of CO2 in the marine subsurface. This mass balance will be achieved through experiments, measurements, and numerical modeling, to achieve the primary objective of constraining the fate of carbon in submarine environments."
Summary
"One prominent idea for mitigating global climate change is to remove CO2 from the atmosphere by storing it in fluids in the natural environment; for example dissolved within sediments below the ocean floor or in oceanic crust. This carbon sequestration is popular because it would allow us to place carbon into semi-permanent (on human timescales) storage, ‘buying time’ to wean us from our dependence on carbon-based energy sources. Application of such a mitigation technique presumes knowledge of what will happen to carbon when it is dissolved in various environments. Studies of naturally produced excess dissolved CO2 are, however, equivocal; this lack of knowledge represents a huge deficit in our comprehension of the global carbon cycle and specifically the processes removing carbon from the surface of the planet over geological timescales.
This proposal will resolve the sink for CO2 within marine sediments and oceanic crust. Beneath much of the ocean floor exists the ‘deep biosphere’, microbial populations living largely in the absence of oxygen, consuming organic carbon that has fallen to the sea floor, producing a large excess of dissolved inorganic carbon. This dissolved inorganic carbon can diffuse back to the ocean or can precipitate in situ as carbonate minerals. Previous attempts to quantify the flux of carbon through the deep biosphere focused mostly on studies of sulfur and carbon, and these studies cannot reveal the fate of the produced inorganic carbon. I propose a novel approach to constrain the fate of carbon through the study of the subsurface calcium cycle. Calcium is the element involved in precipitating carbon as in situ carbonate minerals and thus will directly provide the required mass balance to determine the fate of CO2 in the marine subsurface. This mass balance will be achieved through experiments, measurements, and numerical modeling, to achieve the primary objective of constraining the fate of carbon in submarine environments."
Max ERC Funding
1 945 695 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym FASTER
Project "Fundamental Studies of the Sources, Properties and Environmental Behaviour of Exhaust Nanoparticles from Road Vehicles"
Researcher (PI) Roy Harrison
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary "Despite intensive abatement efforts, airborne particulate matter remains a major public health issue with costs across the European Union estimated at 600 billion euros in 2005. Road traffic remains one of the major sources of particulate matter, and diesel emissions are by far the largest source of atmospheric nanoparticles in urban areas. Semi-volatile organic compounds emitted largely in the condensed matter phase are a major component of diesel emissions, and as primary particles are advected from their road traffic source, the semi-volatile compounds vaporise and are oxidised, forming a greater mass of secondary organic aerosol (SOA). However, the semi-volatile compounds are extremely poorly characterised as they are not resolved by traditional gas chromatographic methods, presenting an unresolved complex mixture (UCM). For this reason, despite being a major precursor of SOA, such compounds are often poorly represented or completely omitted from atmospheric chemistry-transport models. This proposal is concerned with applying new two dimensional gas chromatographic methods to characterisation of the UCM at a molecular level which will be followed by studies of the physico-chemical properties of representative components of the semi-volatile emissions. The very abundant nucleation nanoparticle mode of diesel emissions is comprised almost entirely of semi-volatile organic material and hence these particles are progressively lost from the atmosphere by evaporation. Until now, there has been insufficient knowledge of the properties of the semi-volatile components to model this behaviour reliably. Such processes will be quantified through both controlled laboratory studies and carefully designed field measurements. Numerical models on both a street canyon and a neighbourhood (5x5 km) scale will be developed to simulate the key processes, such that spatial patterns and size distributions will be predicted, and compared with independent measurements."
Summary
"Despite intensive abatement efforts, airborne particulate matter remains a major public health issue with costs across the European Union estimated at 600 billion euros in 2005. Road traffic remains one of the major sources of particulate matter, and diesel emissions are by far the largest source of atmospheric nanoparticles in urban areas. Semi-volatile organic compounds emitted largely in the condensed matter phase are a major component of diesel emissions, and as primary particles are advected from their road traffic source, the semi-volatile compounds vaporise and are oxidised, forming a greater mass of secondary organic aerosol (SOA). However, the semi-volatile compounds are extremely poorly characterised as they are not resolved by traditional gas chromatographic methods, presenting an unresolved complex mixture (UCM). For this reason, despite being a major precursor of SOA, such compounds are often poorly represented or completely omitted from atmospheric chemistry-transport models. This proposal is concerned with applying new two dimensional gas chromatographic methods to characterisation of the UCM at a molecular level which will be followed by studies of the physico-chemical properties of representative components of the semi-volatile emissions. The very abundant nucleation nanoparticle mode of diesel emissions is comprised almost entirely of semi-volatile organic material and hence these particles are progressively lost from the atmosphere by evaporation. Until now, there has been insufficient knowledge of the properties of the semi-volatile components to model this behaviour reliably. Such processes will be quantified through both controlled laboratory studies and carefully designed field measurements. Numerical models on both a street canyon and a neighbourhood (5x5 km) scale will be developed to simulate the key processes, such that spatial patterns and size distributions will be predicted, and compared with independent measurements."
Max ERC Funding
2 394 959 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym FORESTPRIME
Project Predicting carbon release from forest soils through priming effects: a new approach to reconcile results across multiple scales
Researcher (PI) Emma Jane Sayer
Host Institution (HI) UNIVERSITY OF LANCASTER
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Feedbacks between plants and soil under environmental change are likely to have a significant impact on ecosystem carbon cycling. Recent work has shown that increased atmospheric carbon dioxide concentrations have enhanced tree growth in forests. However these increases in growth can also cause ‘priming effects’ whereby microbial degradation of soil organic matter is stimulated by fresh carbon inputs, such as plant litter, releasing additional carbon from the soil. Given that forest soils represent the largest terrestrial carbon pool, priming effects could cause a major release of carbon dioxide to the atmosphere. Despite their potential importance in ecosystem carbon dynamics under environmental change, the processes and mechanisms underlying priming effects are still poorly understood. This is in part due to the enormous disparities in the experimental scales and methods required to study microbial processes vs. ecosystem carbon dynamics and the difficulties in extrapolating the results of laboratory studies to the ecosystem level. This project will significantly advance our understanding of the role of priming effects in forest carbon dynamics in different forest types and reconcile the experimental problems of scale using multidisciplinary nested studies across multiple scales. The nested design will explicitly test the validity of extrapolations made at one scale to predict effects at another. The ultimate aim is to allow the extrapolation of results from small-scale studies of priming to the ecosystem level for a wide range of forests. The results will establish this fundamentally new approach as a widely applicable method in the study of plant-soil feedbacks. This research will provide the first comprehensive comparative dataset on priming effects across forests worldwide and form the solid basis for their inclusion in model predictions of forest carbon cycling under future global change.
Summary
Feedbacks between plants and soil under environmental change are likely to have a significant impact on ecosystem carbon cycling. Recent work has shown that increased atmospheric carbon dioxide concentrations have enhanced tree growth in forests. However these increases in growth can also cause ‘priming effects’ whereby microbial degradation of soil organic matter is stimulated by fresh carbon inputs, such as plant litter, releasing additional carbon from the soil. Given that forest soils represent the largest terrestrial carbon pool, priming effects could cause a major release of carbon dioxide to the atmosphere. Despite their potential importance in ecosystem carbon dynamics under environmental change, the processes and mechanisms underlying priming effects are still poorly understood. This is in part due to the enormous disparities in the experimental scales and methods required to study microbial processes vs. ecosystem carbon dynamics and the difficulties in extrapolating the results of laboratory studies to the ecosystem level. This project will significantly advance our understanding of the role of priming effects in forest carbon dynamics in different forest types and reconcile the experimental problems of scale using multidisciplinary nested studies across multiple scales. The nested design will explicitly test the validity of extrapolations made at one scale to predict effects at another. The ultimate aim is to allow the extrapolation of results from small-scale studies of priming to the ecosystem level for a wide range of forests. The results will establish this fundamentally new approach as a widely applicable method in the study of plant-soil feedbacks. This research will provide the first comprehensive comparative dataset on priming effects across forests worldwide and form the solid basis for their inclusion in model predictions of forest carbon cycling under future global change.
Max ERC Funding
1 694 796 €
Duration
Start date: 2012-12-01, End date: 2018-05-31
Project acronym GEM-TRAIT
Project GEM-TRAIT: The Global Ecosystems Monitoring and Trait Study: a novel approach to quantifying the role of biodiversity in the functioning and future of tropical forests
Researcher (PI) Yadvinder Singh Malhi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary "This proposal directly addresses one of the great challenges in Earth system science: how will the terrestrial biosphere respond to global atmospheric change and, more specifically, how does the biodiversity of the biosphere moderate or affect that response? This proposal focuses on tropical forests. We are currently unable to understand how tropical forests will respond to climate change because there is (i) a data-deficit: we simply do not have the data to understand the relationship between tropical forest diversity and ecosystem science; and (ii) a theory-deficit: we have not developed an adequate and quantitative theoretical framework to relate functional biodiversity to ecosystem function. This proposal will directly address both these deficits.
Firstly, I will build a unique global tropical ecosystems monitoring network (GEM), that will measure in comprehensive detail the structure, productivity and metabolism of 47 tropical forest sites over a globally synchronous 2.5 year period. In addition, I will develop a large dataset of functional diversity by collecting functional traits of leaves and wood.
Secondly, the theory deficit will be addressed by drawing on the recent development of a novel mathematical formalism that links biodiversity to ecosystem function. This formalism focuses on the distribution of traits within an ecosystem, links this distribution to ecosystem function, and develops predictions of how the shape of the distribution is controlled by environment, biological interactions and previous states of the ecosystem. I will further develop this theory, test its predictions against my unique field data, and ultimately use it to develop a new biodiversity-focussed way of representing tropical forests in ecosystem and Earth system models. This new approach used to answer questions such as: how does the functional diversity of tropical forests affect their resilience to climate change, and how will this diversity respond to atmospheric change?"
Summary
"This proposal directly addresses one of the great challenges in Earth system science: how will the terrestrial biosphere respond to global atmospheric change and, more specifically, how does the biodiversity of the biosphere moderate or affect that response? This proposal focuses on tropical forests. We are currently unable to understand how tropical forests will respond to climate change because there is (i) a data-deficit: we simply do not have the data to understand the relationship between tropical forest diversity and ecosystem science; and (ii) a theory-deficit: we have not developed an adequate and quantitative theoretical framework to relate functional biodiversity to ecosystem function. This proposal will directly address both these deficits.
Firstly, I will build a unique global tropical ecosystems monitoring network (GEM), that will measure in comprehensive detail the structure, productivity and metabolism of 47 tropical forest sites over a globally synchronous 2.5 year period. In addition, I will develop a large dataset of functional diversity by collecting functional traits of leaves and wood.
Secondly, the theory deficit will be addressed by drawing on the recent development of a novel mathematical formalism that links biodiversity to ecosystem function. This formalism focuses on the distribution of traits within an ecosystem, links this distribution to ecosystem function, and develops predictions of how the shape of the distribution is controlled by environment, biological interactions and previous states of the ecosystem. I will further develop this theory, test its predictions against my unique field data, and ultimately use it to develop a new biodiversity-focussed way of representing tropical forests in ecosystem and Earth system models. This new approach used to answer questions such as: how does the functional diversity of tropical forests affect their resilience to climate change, and how will this diversity respond to atmospheric change?"
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym HABITABLEPLANET
Project Creating a habitable planet: the roles of accretion, core formation and plate tectonics
Researcher (PI) Helen Williams
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary The Earth formed ~ 4.5 billion years ago, from accreting particles of dust and primitive meteorites. It is the only habitable planet in our solar system and has a unique history of extended accretion and core formation coupled with active plate tectonics. Accretion and core formation would have defined the initial elemental composition of the Earth’s interior whereas plate tectonic processes controlled chemical exchange between the Earth’s surface and interior and the distribution of elements between major geochemical reservoirs. The overarching goal of this proposal is to define the roles of these processes in the chemical evolution of the Earth and hence in the creation of a habitable planet.
In order to achieve this goal I propose to investigate the partitioning of new stable isotope systems such as Ge and Se in high-pressure experiments that simulate core formation. This novel, multidisciplinary approach will provide some of the first direct constraints on the extent to which these volatile elements were partitioned into the core. We will use this information to address the fundamental issue of whether the Earth acquired its volatile elements inventory early, during core formation, or subsequently, as part of a “late veneer”. The second major theme of the proposed research uses Fe, Zn, Mo and Se stable isotopes to trace the cycling of Fe and S during subduction, the tectonic process where one plate sinks beneath another and is recycled into the Earth’s deep interior. The goal of this project is to understand the impact of subduction on the chemical and redox evolution of the Earth’s interior and the relationship between tectonic recycling and the rise of oxygen in the Earth’s atmosphere ~ 2.5 billion years ago. This theme will focus on samples of relict subducted plate material and of the Earth’s interior, obtained as fragments sampled by lavas or as ancient minerals trapped within diamonds.
Summary
The Earth formed ~ 4.5 billion years ago, from accreting particles of dust and primitive meteorites. It is the only habitable planet in our solar system and has a unique history of extended accretion and core formation coupled with active plate tectonics. Accretion and core formation would have defined the initial elemental composition of the Earth’s interior whereas plate tectonic processes controlled chemical exchange between the Earth’s surface and interior and the distribution of elements between major geochemical reservoirs. The overarching goal of this proposal is to define the roles of these processes in the chemical evolution of the Earth and hence in the creation of a habitable planet.
In order to achieve this goal I propose to investigate the partitioning of new stable isotope systems such as Ge and Se in high-pressure experiments that simulate core formation. This novel, multidisciplinary approach will provide some of the first direct constraints on the extent to which these volatile elements were partitioned into the core. We will use this information to address the fundamental issue of whether the Earth acquired its volatile elements inventory early, during core formation, or subsequently, as part of a “late veneer”. The second major theme of the proposed research uses Fe, Zn, Mo and Se stable isotopes to trace the cycling of Fe and S during subduction, the tectonic process where one plate sinks beneath another and is recycled into the Earth’s deep interior. The goal of this project is to understand the impact of subduction on the chemical and redox evolution of the Earth’s interior and the relationship between tectonic recycling and the rise of oxygen in the Earth’s atmosphere ~ 2.5 billion years ago. This theme will focus on samples of relict subducted plate material and of the Earth’s interior, obtained as fragments sampled by lavas or as ancient minerals trapped within diamonds.
Max ERC Funding
1 999 975 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym ISONEB
Project Isotopic records of solar nebula evolution and controls on planetary compositions
Researcher (PI) Timothy Elliott
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary This project has three linked strands that will combine to constrain the birth environment of the solar system and the nebular processes that shape bulk planetary compositions. Firstly, I will use ultra-high precision isotope ratio measurements in bulk meteorites to determine the stellar origin of the pre-solar of material that controls the gross compositional differences between planetary bodies. Secondly I will identify the mineralogical hosts of this isotopic variability, using in situ laser ablation analyses with a unique collision-cell multi-collector inductively coupled plasma mass-spectrometer, developed in close collaboration with an industrial partner (Thermo Fisher) as part of the project. Thirdly, I will establish a chronology for the mixing of the pre-solar material within the nebula, by dating individual meteorite components (chondrules) using ‘absolute’ Pb and relative 26Al-26Mg approaches and analysing the same aliquots for their mass-independent isotopic compositions. These observations will be quantitatively interpreted using novel numerical models of particle dynamics in the protoplanetary disk, in collaboration with Fred Cieala. This is an ambitious project that builds on the analytical prowess of the laboratory I have developed at Bristol and couples this with challenging technical developments and inter-disciplinary, modelling calculations. This work will radically improve our understanding of the history of the early solar system and the fundamental processes that shape its evolution.
Summary
This project has three linked strands that will combine to constrain the birth environment of the solar system and the nebular processes that shape bulk planetary compositions. Firstly, I will use ultra-high precision isotope ratio measurements in bulk meteorites to determine the stellar origin of the pre-solar of material that controls the gross compositional differences between planetary bodies. Secondly I will identify the mineralogical hosts of this isotopic variability, using in situ laser ablation analyses with a unique collision-cell multi-collector inductively coupled plasma mass-spectrometer, developed in close collaboration with an industrial partner (Thermo Fisher) as part of the project. Thirdly, I will establish a chronology for the mixing of the pre-solar material within the nebula, by dating individual meteorite components (chondrules) using ‘absolute’ Pb and relative 26Al-26Mg approaches and analysing the same aliquots for their mass-independent isotopic compositions. These observations will be quantitatively interpreted using novel numerical models of particle dynamics in the protoplanetary disk, in collaboration with Fred Cieala. This is an ambitious project that builds on the analytical prowess of the laboratory I have developed at Bristol and couples this with challenging technical developments and inter-disciplinary, modelling calculations. This work will radically improve our understanding of the history of the early solar system and the fundamental processes that shape its evolution.
Max ERC Funding
3 425 271 €
Duration
Start date: 2013-07-01, End date: 2019-06-30
Project acronym Magma Degassing
Project Defusing volcanic eruptions: the escape of volcanic gas
Researcher (PI) Kim Berlo
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Volcanic eruptions are driven by the exsolution and escape of dissolved volatiles. Fast and efficient escape of volatiles leads to a lower potential for an explosive eruption: defusing it. Yet, despite recognition of the importance of volatile escape, the mechanisms and kinetics of degassing remain unclear. This study aims to use a pioneering approach to reconstruct the escape of volcanic gases.
Exsolved gases are ephemeral and do not survive eruption. However textural evidence such as vesicles, fractures and veins in erupted magma lingers. Moreover, new data shows that chemical signals of degassing endure, not only in minerals, but also in quenched melt.
Volcanic gases are enriched in metals such as Hg, Tl, and Cu resulting in ore deposits and contributing to global metal emissions. Such enrichment is based on the preference of these metals for a gas phase. This project will establish how metals partition between volcanic gas and melt (basalt and rhyolite), how quickly such equilibrium partitioning is reached, and what can be learned regarding magma degassing from gas emissions and melt compositions as measured at volcanoes.
The first part of the project focuses on obtaining gas-melt partition coefficients and diffusivities of metals. The second part of the project involves comparison to natural samples. Metal concentration variations will be mapped within an exposed magmatic conduit and in recent explosively erupted volcanic rocks. The third part of the project aims to model the escape of volcanic gases using reactive flow modeling.
The combined results of this project will not only show how and how fast volcanic gases escape, but also form the basis of a new approach to quantifying historic (from glass shards) and future (from gas emissions) magmatic metal release to potential ore forming systems as well as to the atmosphere. Moreover, linking gas chemistry to dynamic degassing processes in a quantitative model will aid prediction of eruption style and timing.
Summary
Volcanic eruptions are driven by the exsolution and escape of dissolved volatiles. Fast and efficient escape of volatiles leads to a lower potential for an explosive eruption: defusing it. Yet, despite recognition of the importance of volatile escape, the mechanisms and kinetics of degassing remain unclear. This study aims to use a pioneering approach to reconstruct the escape of volcanic gases.
Exsolved gases are ephemeral and do not survive eruption. However textural evidence such as vesicles, fractures and veins in erupted magma lingers. Moreover, new data shows that chemical signals of degassing endure, not only in minerals, but also in quenched melt.
Volcanic gases are enriched in metals such as Hg, Tl, and Cu resulting in ore deposits and contributing to global metal emissions. Such enrichment is based on the preference of these metals for a gas phase. This project will establish how metals partition between volcanic gas and melt (basalt and rhyolite), how quickly such equilibrium partitioning is reached, and what can be learned regarding magma degassing from gas emissions and melt compositions as measured at volcanoes.
The first part of the project focuses on obtaining gas-melt partition coefficients and diffusivities of metals. The second part of the project involves comparison to natural samples. Metal concentration variations will be mapped within an exposed magmatic conduit and in recent explosively erupted volcanic rocks. The third part of the project aims to model the escape of volcanic gases using reactive flow modeling.
The combined results of this project will not only show how and how fast volcanic gases escape, but also form the basis of a new approach to quantifying historic (from glass shards) and future (from gas emissions) magmatic metal release to potential ore forming systems as well as to the atmosphere. Moreover, linking gas chemistry to dynamic degassing processes in a quantitative model will aid prediction of eruption style and timing.
Max ERC Funding
1 604 211 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym NanoPaleoMag
Project Nanopaleomagnetism: a multiscale approach to paleomagnetic analysis of geological materials
Researcher (PI) Richard John Harrison
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary Paleomagnetism has played a pivotal role in developing our modern understanding of the Earth, and remains one of the primary tools used to study the structure and dynamics of the Earth and other planets. However, some of the most interesting and controversial periods of Earth’s history occur far beyond the current limits of our confidence in the paleomagnetic signals used to study them. NanoPaleoMag will solve this problem by dramatically increasing the range of materials that are suitable for paleomagnetic study, thereby opening up periods of Earth history that have hitherto defied conventional paleomagnetic analysis.
Rocks are chemically, mineralogically, texturally and magnetically heterogeneous materials, with heterogeneity occuring at all length scales – from metres to nanometres. There is a pressing need to push the spatial resolution of paleomagnetic studies beyond their current limits and to extend the analysis into 3D. Adopting cutting-edge techniques from physics and materials science, NanoPaleoMag will perform paleomagnetic measurements at submicron length scales. 3D measurements of the volume, shape and spacing of all magnetic particles within a microscale region of interest will be made using a focused ion beam workstation. Combined with high-resolution paleomagnetic measurements and nanometre/nanosecond electron/X-ray magnetic imaging, NanoPaleoMag will characterise the magnetic properties of geological materials at fundamental length scales and time scales. Sample-return missions to asteroids, comets, moons and planets will soon provide unprecedented opportunities for extraterrestrial paleomagnetism. NanoPaleoMag will provide the methodology and instrumentation needed to analyse these precious materials.
Summary
Paleomagnetism has played a pivotal role in developing our modern understanding of the Earth, and remains one of the primary tools used to study the structure and dynamics of the Earth and other planets. However, some of the most interesting and controversial periods of Earth’s history occur far beyond the current limits of our confidence in the paleomagnetic signals used to study them. NanoPaleoMag will solve this problem by dramatically increasing the range of materials that are suitable for paleomagnetic study, thereby opening up periods of Earth history that have hitherto defied conventional paleomagnetic analysis.
Rocks are chemically, mineralogically, texturally and magnetically heterogeneous materials, with heterogeneity occuring at all length scales – from metres to nanometres. There is a pressing need to push the spatial resolution of paleomagnetic studies beyond their current limits and to extend the analysis into 3D. Adopting cutting-edge techniques from physics and materials science, NanoPaleoMag will perform paleomagnetic measurements at submicron length scales. 3D measurements of the volume, shape and spacing of all magnetic particles within a microscale region of interest will be made using a focused ion beam workstation. Combined with high-resolution paleomagnetic measurements and nanometre/nanosecond electron/X-ray magnetic imaging, NanoPaleoMag will characterise the magnetic properties of geological materials at fundamental length scales and time scales. Sample-return missions to asteroids, comets, moons and planets will soon provide unprecedented opportunities for extraterrestrial paleomagnetism. NanoPaleoMag will provide the methodology and instrumentation needed to analyse these precious materials.
Max ERC Funding
2 384 543 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym PantaRhei
Project Interdisciplinary Integrated Forecasting System for Fluid Flows
Researcher (PI) Piotr Krzysztof Smolarkiewicz
Host Institution (HI) EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary A high performance modelling system is proposed for simulating multi-scale flows with an unprecedented range of multidisciplinary physical applications. Computer simulations of global weather at horizontal resolutions in the order of a kilometre (i.e. nonhydrostatic) will become operational for numerical weather prediction (NWP) beyond 2020. Existing NWP models operate at hydrostatic scales and are not equipped to resolve convective motions where nonhydrostatic effects dominate, thus impairing the fidelity of forecasts. While NWP strives to extend the skill towards finer scales, nonhydrostatic research models endeavour to extend their realm towards the global domain. The two routes of development must cross, but the approach how to merge the diverse expertise is far from obvious. The proposed work will synthesise the complementary skills of two exceptionally successful modelling systems: ECMWF's Integrated Forecasting System (IFS) and the nonhydrostatic research model EULAG formulated by the principal investigator. The IFS is one of the most comprehensive Earth-system models available in the world, while EULAG offers unprecedented expertise in multidisciplinary computational fluid dynamics (CFD) ranging from simulations of laboratory flows to magneto-hydrodynamics of solar convection. The essence of the proposal is a pioneering numerical approach, where a nonhydrostatic global model is conditioned by global hydrostatic solutions within a single code framework. The key technology are EULAG's numerical procedures expressed in time-dependent generalized curvilinear coordinates, pairing the mathematical apparatus of general relativity with modern CFD. The new model will predict with greater fidelity extreme weather events that are critical to the protection of society while sustaining Europe’s role as the world leader in operational NWP. Moreover, this model will be one of the most advanced computing tools available to the European community for research and education.
Summary
A high performance modelling system is proposed for simulating multi-scale flows with an unprecedented range of multidisciplinary physical applications. Computer simulations of global weather at horizontal resolutions in the order of a kilometre (i.e. nonhydrostatic) will become operational for numerical weather prediction (NWP) beyond 2020. Existing NWP models operate at hydrostatic scales and are not equipped to resolve convective motions where nonhydrostatic effects dominate, thus impairing the fidelity of forecasts. While NWP strives to extend the skill towards finer scales, nonhydrostatic research models endeavour to extend their realm towards the global domain. The two routes of development must cross, but the approach how to merge the diverse expertise is far from obvious. The proposed work will synthesise the complementary skills of two exceptionally successful modelling systems: ECMWF's Integrated Forecasting System (IFS) and the nonhydrostatic research model EULAG formulated by the principal investigator. The IFS is one of the most comprehensive Earth-system models available in the world, while EULAG offers unprecedented expertise in multidisciplinary computational fluid dynamics (CFD) ranging from simulations of laboratory flows to magneto-hydrodynamics of solar convection. The essence of the proposal is a pioneering numerical approach, where a nonhydrostatic global model is conditioned by global hydrostatic solutions within a single code framework. The key technology are EULAG's numerical procedures expressed in time-dependent generalized curvilinear coordinates, pairing the mathematical apparatus of general relativity with modern CFD. The new model will predict with greater fidelity extreme weather events that are critical to the protection of society while sustaining Europe’s role as the world leader in operational NWP. Moreover, this model will be one of the most advanced computing tools available to the European community for research and education.
Max ERC Funding
999 559 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym SLIM
Project Strain Localisation in Magma
Researcher (PI) Yan Lavallée
Host Institution (HI) THE UNIVERSITY OF LIVERPOOL
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary The tendency of geomaterials to localise deformation is a measure of “the fragility of the Earth” – a threshold to the occurrence of geological hazards. At volcanoes, the remarkable, unpredictable and alarming occurrence of eruptions, switching from low-risk effusive to high-risk explosive eruptive behaviour is a direct consequence of strain localisation in magma (SLiM).
A deformation mechanism map of magma subjected to strain localisation will allow numerical models with higher accuracy, which, coupled to an understanding of the mechanics driving the monitored geophysical signals precursor to failure, will enhance eruption forecasts.
We propose a truly innovative and interdisciplinary approach to a description of SLiM. This collaborative study will pioneer in the integration of efforts from field geologists, experimentalist, mineralogists, petrologists, seismologists, and numerical modellers to underline the effects of microscopic processes responsible for the large-scale impacts of strain localisation in magma during transport and eruption.
Summary
The tendency of geomaterials to localise deformation is a measure of “the fragility of the Earth” – a threshold to the occurrence of geological hazards. At volcanoes, the remarkable, unpredictable and alarming occurrence of eruptions, switching from low-risk effusive to high-risk explosive eruptive behaviour is a direct consequence of strain localisation in magma (SLiM).
A deformation mechanism map of magma subjected to strain localisation will allow numerical models with higher accuracy, which, coupled to an understanding of the mechanics driving the monitored geophysical signals precursor to failure, will enhance eruption forecasts.
We propose a truly innovative and interdisciplinary approach to a description of SLiM. This collaborative study will pioneer in the integration of efforts from field geologists, experimentalist, mineralogists, petrologists, seismologists, and numerical modellers to underline the effects of microscopic processes responsible for the large-scale impacts of strain localisation in magma during transport and eruption.
Max ERC Funding
1 908 000 €
Duration
Start date: 2012-10-01, End date: 2018-06-30