Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym CELLFITNESS
Project Active Mechanisms of Cell Selection: From Cell Competition to Cell Fitness
Researcher (PI) Eduardo Moreno Lampaya
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary The molecular mechanisms that mediate cell competition, cell fitness and cell selection is gaining interest. With innovative approaches, molecules and ground-breaking hypothesis, this field of research can help understand several biological processes such as development, cancer and tissue degeneration. The project has 3 clear and ambitious objectives: 1. We propose to identify all the key genes mediating cell competition and their molecular mechanisms. In order to reach this objective we will use data from two whole genome screens in Drosophila where we have identified 7 key genes. By the end of this CoG grant, we should have no big gaps in our knowledge of how slow dividing cells are recognised and eliminated in Drosophila. 2. In addition, we will explore how general the cell competition pathways are and how they can impact biomedical research, with a focus in cancer and tissue degeneration. The interest in cancer is based on experiments in Drosophila and mice where we and others have found that an active process of cell selection determines tumour growth. Preliminary results suggest that the pathways identified do not only play important roles in the elimination of slow dividing cells, but also during cancer initiation and progression. 3. We will further explore the role of cell competition in neuronal selection, specially during neurodegeneration, development of the retina and adult brain regeneration in Drosophila. This proposal is of an interdisciplinary nature because it takes a basic cellular mechanism (the genetic pathways that select cells within tissues) and crosses boundaries between different fields of research: development, cancer, regeneration and tissue degeneration. In this ERC CoG proposal, we are committed to continue our efforts from basic science to biomedical approaches. The phenomena of cell competition and its participating genes have the potential to discover novel biomarkers and therapeutic strategies against cancer and tissue degeneration.
Summary
The molecular mechanisms that mediate cell competition, cell fitness and cell selection is gaining interest. With innovative approaches, molecules and ground-breaking hypothesis, this field of research can help understand several biological processes such as development, cancer and tissue degeneration. The project has 3 clear and ambitious objectives: 1. We propose to identify all the key genes mediating cell competition and their molecular mechanisms. In order to reach this objective we will use data from two whole genome screens in Drosophila where we have identified 7 key genes. By the end of this CoG grant, we should have no big gaps in our knowledge of how slow dividing cells are recognised and eliminated in Drosophila. 2. In addition, we will explore how general the cell competition pathways are and how they can impact biomedical research, with a focus in cancer and tissue degeneration. The interest in cancer is based on experiments in Drosophila and mice where we and others have found that an active process of cell selection determines tumour growth. Preliminary results suggest that the pathways identified do not only play important roles in the elimination of slow dividing cells, but also during cancer initiation and progression. 3. We will further explore the role of cell competition in neuronal selection, specially during neurodegeneration, development of the retina and adult brain regeneration in Drosophila. This proposal is of an interdisciplinary nature because it takes a basic cellular mechanism (the genetic pathways that select cells within tissues) and crosses boundaries between different fields of research: development, cancer, regeneration and tissue degeneration. In this ERC CoG proposal, we are committed to continue our efforts from basic science to biomedical approaches. The phenomena of cell competition and its participating genes have the potential to discover novel biomarkers and therapeutic strategies against cancer and tissue degeneration.
Max ERC Funding
1 968 062 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym CentrioleBirthDeath
Project Mechanism of centriole inheritance and maintenance
Researcher (PI) Monica BETTENCOURT CARVALHO DIAS
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Summary
Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-01-01, End date: 2022-12-31
Project acronym ChronosAntibiotics
Project Exploring the bacterial cell cycle to re-sensitize antibiotic-resistant bacteria
Researcher (PI) MARIANA LUISA TOMAS GOMES DE PINHO
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Country Portugal
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Summary
Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Max ERC Funding
2 533 500 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CODECHECK
Project CRACKING THE CODE BEHIND MITOTIC FIDELITY: the roles of tubulin post-translational modifications and a chromosome separation checkpoint
Researcher (PI) Helder Jose Martins Maiato
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Summary
During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Max ERC Funding
2 323 468 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym COMPCON
Project Competition under (niche) construction
Researcher (PI) Sara NEWBERY RAPOSO DE MAGALHaES
Host Institution (HI) FCIENCIAS.ID - ASSOCIACAO PARA A INVESTIGACAO E DESENVOLVIMENTO DE CIENCIAS
Country Portugal
Call Details Consolidator Grant (CoG), LS8, ERC-2016-COG
Summary Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Summary
Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Max ERC Funding
1 999 275 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym COOPERATIVE PARTNER
Project Partner choice and the evolution of cooperation
Researcher (PI) Rita COVAS
Host Institution (HI) ICETA INSTITUTO DE CIENCIAS, TECNOLOGIAS E AGROAMBIENTE DA UNIVERSIDADE DO PORTO
Country Portugal
Call Details Consolidator Grant (CoG), LS8, ERC-2019-COG
Summary Cooperation represents an evolutionary puzzle because natural sCooperation poses an evolutionary problem because natural selection is thought to favour cheaters over co-operators. However, theory and studies in humans show us that co-operators are preferred over cheaters as social and sexual partners. Partner choice may therefore provide a powerful explanation for the evolution and stability of cooperation, alongside kin selection and self-serving benefits, but we lack an understanding of its importance in natural systems. Recent studies showing that animals have a preference for associating with more cooperative individuals are promising but were mostly conducted in artificial captive conditions, making the evolutionary implications of partner choice hard to assess. Manipulating cooperation in the wild to test the fitness consequences of partner choice is the leap that is required to understand whether or not partner choice provides an evolutionary explanation for cooperation. I will pursue this goal using a long-term study that I established on a highly cooperative wild bird, the sociable weaver Philetairus socius. New methodological developments now allow us to conduct large-scale experiments in the wild, and detailed tracking of individual for several years will allow us to quantify the fitness consequences of choice. Specifically, here I will: i) use a new conceptual framework to test whether cooperation is repeatable (a pre-requirement for partner choice); ii) use state-of-the-art technology to manipulate cooperative behaviour and measure the resulting patterns of social and sexual partner choice; iii) use physiological measures and lifetime reproductive success to examine the fitness benefits arising from partner choice and the underlying mechanisms for both co-operators and the individuals that associate with them. Ultimately, the project will provide a novel and robust evaluation of the roles of social and sexual selection for the evolution of cooperation.
Summary
Cooperation represents an evolutionary puzzle because natural sCooperation poses an evolutionary problem because natural selection is thought to favour cheaters over co-operators. However, theory and studies in humans show us that co-operators are preferred over cheaters as social and sexual partners. Partner choice may therefore provide a powerful explanation for the evolution and stability of cooperation, alongside kin selection and self-serving benefits, but we lack an understanding of its importance in natural systems. Recent studies showing that animals have a preference for associating with more cooperative individuals are promising but were mostly conducted in artificial captive conditions, making the evolutionary implications of partner choice hard to assess. Manipulating cooperation in the wild to test the fitness consequences of partner choice is the leap that is required to understand whether or not partner choice provides an evolutionary explanation for cooperation. I will pursue this goal using a long-term study that I established on a highly cooperative wild bird, the sociable weaver Philetairus socius. New methodological developments now allow us to conduct large-scale experiments in the wild, and detailed tracking of individual for several years will allow us to quantify the fitness consequences of choice. Specifically, here I will: i) use a new conceptual framework to test whether cooperation is repeatable (a pre-requirement for partner choice); ii) use state-of-the-art technology to manipulate cooperative behaviour and measure the resulting patterns of social and sexual partner choice; iii) use physiological measures and lifetime reproductive success to examine the fitness benefits arising from partner choice and the underlying mechanisms for both co-operators and the individuals that associate with them. Ultimately, the project will provide a novel and robust evaluation of the roles of social and sexual selection for the evolution of cooperation.
Max ERC Funding
1 999 335 €
Duration
Start date: 2020-06-01, End date: 2025-05-31
Project acronym DevoTed_miR
Project MicroRNA determinants of the balance between effector and regulatory T cells in vivo
Researcher (PI) Bruno Miguel De Carvalho e Silva Santos
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Country Portugal
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Summary
T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2021-02-28
Project acronym DYCOCIRC
Project Basal ganglia circuit mechanisms underlying dynamic cognitive behavior
Researcher (PI) Joseph PATON
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary You’re faced with a difficult choice. What do you do? Most people will, either explicitly or implicitly, weigh the possible consequences their decision. This involves an internal journey through possible events. Its these kinds of dynamic processes and their mapping onto behavior that characterize higher brain function. And yet, their very internal nature is both what makes them of critical interest and so difficult to study. Here, we propose to study a simple, well-controlled decision-making behavior wherein mice have to generate a dynamic, internal representation of elapsed time in order to make choices that result in reward. We focus on frontal cortico-basal ganglia circuits and their dopaminergic inputs that together are broadly implicated in cognition and involved in the production of this particular behavior. We have demonstrated previously that striatal population dynamics and dopamine neuron activity both correlate with and exert control over animals’ judgments. Having identified key signals at multiple stages of the BG circuit related to this decision in rats and mice, my laboratory is now uniquely poised to dissect the circuit mechanisms by which such signals are generated and transformed into actions. Specifically, we will 1) Measure activity of specific cell types at multiple stages of the BG as mice judge duration. 2) Image and manipulate the activity of DA neurons while recording from neural populations in the BG to determine the relationship between neuromodulatory input, neural dynamics, and behavior. 3) Relate the activity of cortico-striatal inputs to striatal responses during behavior to understand the computational and circuit bases of striatal activity. These experiments promise to unlock deep mysteries regarding how animals free themselves from the immediacy of the current moment, learning, planning, and choosing their path toward a safer, more fruitful, and satisfying existence.
Summary
You’re faced with a difficult choice. What do you do? Most people will, either explicitly or implicitly, weigh the possible consequences their decision. This involves an internal journey through possible events. Its these kinds of dynamic processes and their mapping onto behavior that characterize higher brain function. And yet, their very internal nature is both what makes them of critical interest and so difficult to study. Here, we propose to study a simple, well-controlled decision-making behavior wherein mice have to generate a dynamic, internal representation of elapsed time in order to make choices that result in reward. We focus on frontal cortico-basal ganglia circuits and their dopaminergic inputs that together are broadly implicated in cognition and involved in the production of this particular behavior. We have demonstrated previously that striatal population dynamics and dopamine neuron activity both correlate with and exert control over animals’ judgments. Having identified key signals at multiple stages of the BG circuit related to this decision in rats and mice, my laboratory is now uniquely poised to dissect the circuit mechanisms by which such signals are generated and transformed into actions. Specifically, we will 1) Measure activity of specific cell types at multiple stages of the BG as mice judge duration. 2) Image and manipulate the activity of DA neurons while recording from neural populations in the BG to determine the relationship between neuromodulatory input, neural dynamics, and behavior. 3) Relate the activity of cortico-striatal inputs to striatal responses during behavior to understand the computational and circuit bases of striatal activity. These experiments promise to unlock deep mysteries regarding how animals free themselves from the immediacy of the current moment, learning, planning, and choosing their path toward a safer, more fruitful, and satisfying existence.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym EpiMechanism
Project Mechanisms of Chromatin-based Epigenetic Inheritance
Researcher (PI) Lars Jansen
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Country Portugal
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Epigenetic mechanisms heritably maintain gene expression states and chromosome organization across cell division. These include chromatin-based factors that are propagated independent of local DNA sequence elements, and are critical for normal development and prevent reprogramming, e.g. during induction of pluripotency. We focus on the role of nucleosomes, the histone-DNA complexes that make up chromatin. While prominently implicated in epigenetic memory, how histones and their local modifications can actually be inherited is largely unknown. We take aim at three fundamental aspects that we argue are central to this problem: stability of the epigenetic mark, self-templated duplication, and cell cycle coupling.
We developed a unique pulse-labeling strategy to determine whether silent and active chromatin can be inherited and how this relates to transcription, both in cancer cells and in vitro differentiating stem cells. By coupling this strategy to an imaging-based RNAi screen we aim to identify components controlling nucleosome assembly and heritability. We achieve this by focusing on the human centromere, the chromosome locus essential for chromosome segregation which serves as an ideal model for epigenetic memory. This locus is specified by nucleosomes carrying the histone H3 variant, CENP-A that we have previously shown to be highly stable in cycling cells and to be replicated in a strict cell cycle coupled manner. We build on our previous successes to uncover the molecular mechanism and cellular consequences of the coupling between CENP-A propagation and the cell cycle which we postulate, ensures proper centromere size and mitotic fidelity. Furthermore, by genome engineering we developed a strategy to delete an endogenous centromere to determine how centromeres can form de novo and how CENP-A chromatin, once formed, can template its own duplication. With this multi-facetted approach we aim to uncover general mechanistic principles of chromatin-based memory.
Summary
Epigenetic mechanisms heritably maintain gene expression states and chromosome organization across cell division. These include chromatin-based factors that are propagated independent of local DNA sequence elements, and are critical for normal development and prevent reprogramming, e.g. during induction of pluripotency. We focus on the role of nucleosomes, the histone-DNA complexes that make up chromatin. While prominently implicated in epigenetic memory, how histones and their local modifications can actually be inherited is largely unknown. We take aim at three fundamental aspects that we argue are central to this problem: stability of the epigenetic mark, self-templated duplication, and cell cycle coupling.
We developed a unique pulse-labeling strategy to determine whether silent and active chromatin can be inherited and how this relates to transcription, both in cancer cells and in vitro differentiating stem cells. By coupling this strategy to an imaging-based RNAi screen we aim to identify components controlling nucleosome assembly and heritability. We achieve this by focusing on the human centromere, the chromosome locus essential for chromosome segregation which serves as an ideal model for epigenetic memory. This locus is specified by nucleosomes carrying the histone H3 variant, CENP-A that we have previously shown to be highly stable in cycling cells and to be replicated in a strict cell cycle coupled manner. We build on our previous successes to uncover the molecular mechanism and cellular consequences of the coupling between CENP-A propagation and the cell cycle which we postulate, ensures proper centromere size and mitotic fidelity. Furthermore, by genome engineering we developed a strategy to delete an endogenous centromere to determine how centromeres can form de novo and how CENP-A chromatin, once formed, can template its own duplication. With this multi-facetted approach we aim to uncover general mechanistic principles of chromatin-based memory.
Max ERC Funding
1 621 400 €
Duration
Start date: 2014-06-01, End date: 2019-05-31