Project acronym 3DBIOLUNG
Project Bioengineering lung tissue using extracellular matrix based 3D bioprinting
Researcher (PI) Darcy WAGNER
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Summary
Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Max ERC Funding
1 499 975 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ABODYFORCE
Project High Throughput Microfluidic Cell and Nanoparticle Handling by Molecular and Thermal Gradient Acoustic Focusing
Researcher (PI) Per AUGUSTSSON
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE7, ERC-2019-STG
Summary In this project we will push the limits of microscale ultrasound-based technology to gain access to diagnostically important rare constituents of blood within minutes from blood draw.
To meet the demands for shorter time from sampling to result in healthcare there is an increased interest to shift from heavy centralized lab equipment to point-of-care tests and patient self-testing. Key challenges with point-of-care equipment is to enable simultaneous measurement of many parameters at a reasonable cost and size of equipment. Therefore, microscale technologies that can take in small amounts of blood and output results within minutes are sought for. In addition, the high precision and potential for multi-stage serial processing offered by such microfluidic methods opens up for fast and automated isolation of rare cell populations, such as circulating tumor cells, and controlled high-throughput size fractionation of sub-micron biological particles, such as platelets, pathogens and extracellular vesicles.
To achieve effective and fast separation of blood components we will expose blood to acoustic radiation forces in a flow-through format. By exploiting a newly discovered acoustic body force, that stems from local variations the acoustic properties of the cell suspension, we can generate self-organizing configurations of the blood cells. We will tailor and tune the acoustic cell-organization in novel ways by time modulation of the acoustic field, by altering the acoustic properties of the fluid by solute molecules, and by exploiting a novel concept of sound interaction with thermal gradients.
The project will render new fundamental knowledge regarding the acoustic properties of single cells and an extensive theoretical framework for the response of cells in any aqueous medium, bounding geometry and sound field, potentially leading to new diagnostic methods.
Summary
In this project we will push the limits of microscale ultrasound-based technology to gain access to diagnostically important rare constituents of blood within minutes from blood draw.
To meet the demands for shorter time from sampling to result in healthcare there is an increased interest to shift from heavy centralized lab equipment to point-of-care tests and patient self-testing. Key challenges with point-of-care equipment is to enable simultaneous measurement of many parameters at a reasonable cost and size of equipment. Therefore, microscale technologies that can take in small amounts of blood and output results within minutes are sought for. In addition, the high precision and potential for multi-stage serial processing offered by such microfluidic methods opens up for fast and automated isolation of rare cell populations, such as circulating tumor cells, and controlled high-throughput size fractionation of sub-micron biological particles, such as platelets, pathogens and extracellular vesicles.
To achieve effective and fast separation of blood components we will expose blood to acoustic radiation forces in a flow-through format. By exploiting a newly discovered acoustic body force, that stems from local variations the acoustic properties of the cell suspension, we can generate self-organizing configurations of the blood cells. We will tailor and tune the acoustic cell-organization in novel ways by time modulation of the acoustic field, by altering the acoustic properties of the fluid by solute molecules, and by exploiting a novel concept of sound interaction with thermal gradients.
The project will render new fundamental knowledge regarding the acoustic properties of single cells and an extensive theoretical framework for the response of cells in any aqueous medium, bounding geometry and sound field, potentially leading to new diagnostic methods.
Max ERC Funding
1 999 720 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Country Portugal
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2021-12-31
Project acronym AGRIMKT
Project Improving Market Access for Farmers: Evidence from East Africa
Researcher (PI) Lorenzo Casaburi
Host Institution (HI) UNIVERSITAT ZURICH
Country Switzerland
Call Details Starting Grant (StG), SH1, ERC-2019-STG
Summary Agriculture employs the majority of the labor force in many developing countries, particularly in Sub-Saharan Africa. Increasing efficiency of agricultural production is a crucial step to foster economic development. Limited access to both input and output markets is widely considered a major obstacle to technology adoption and, in turn, to agricultural productivity.
In this proposal, I outline a research program that focuses on improving farmers’ market access in East Africa. The research builds on the expertise I have developed on these topics over the last ten years.
The research program consists of three related projects. In Project A, we will use a randomized experiment to evaluate the impact of a holistic approach to improve market access: contract farming. The prevalence of contract farming arrangements in the developing world is growing. However, so far, there is no experimental evidence on their impact. We have established a partnership with a large contract farming company in Kenya, which has agreed to randomize the order in which it will expand to new villages.
In Project B, we will study how to increase demand for crop insurance among smallholders. Building on previous successful experimental work, we will test i) whether offering pay-at-harvest insurance, as opposed to upfront premium pay, raises take-up, ii) which behavioral mechanisms may drive such response, and iii) whether pay-at-harvest can foster sustained insurance demand over multiple crop seasons.
In Project C, we will combine parcel-level proprietary data for three decades that we obtained from a large agribusiness company with land registry data to study the determinants and impact of land market access for smallholders.
The research program will generate new insights on how to improve access to key markets for agricultural producers. We expect the findings of the study will generate high interest among academics, development practitioners, and policymakers.
Summary
Agriculture employs the majority of the labor force in many developing countries, particularly in Sub-Saharan Africa. Increasing efficiency of agricultural production is a crucial step to foster economic development. Limited access to both input and output markets is widely considered a major obstacle to technology adoption and, in turn, to agricultural productivity.
In this proposal, I outline a research program that focuses on improving farmers’ market access in East Africa. The research builds on the expertise I have developed on these topics over the last ten years.
The research program consists of three related projects. In Project A, we will use a randomized experiment to evaluate the impact of a holistic approach to improve market access: contract farming. The prevalence of contract farming arrangements in the developing world is growing. However, so far, there is no experimental evidence on their impact. We have established a partnership with a large contract farming company in Kenya, which has agreed to randomize the order in which it will expand to new villages.
In Project B, we will study how to increase demand for crop insurance among smallholders. Building on previous successful experimental work, we will test i) whether offering pay-at-harvest insurance, as opposed to upfront premium pay, raises take-up, ii) which behavioral mechanisms may drive such response, and iii) whether pay-at-harvest can foster sustained insurance demand over multiple crop seasons.
In Project C, we will combine parcel-level proprietary data for three decades that we obtained from a large agribusiness company with land registry data to study the determinants and impact of land market access for smallholders.
The research program will generate new insights on how to improve access to key markets for agricultural producers. We expect the findings of the study will generate high interest among academics, development practitioners, and policymakers.
Max ERC Funding
1 499 913 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hemous
Host Institution (HI) UNIVERSITAT ZURICH
Country Switzerland
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BEE NATURAL
Project A sustainable future for honeybees by unravelling the mechanisms of natural disease resistance
Researcher (PI) Barbara Locke Grander
Host Institution (HI) SVERIGES LANTBRUKSUNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS9, ERC-2020-STG
Summary The ectoparasitic mite, Varroa destructor, vectors lethal honeybee viruses, in particular Deformed wing virus (DWV) and is unarguably the leading cause of honeybee (Apis mellifera) colony mortality world-wide causing critical economic and ecological consequences for pollination-dependent crop production and wild plant biodiversity, respectively. Since the introduction of the mite in the 1970s and 1980s, wild honeybees in Europe and North America have been nearly completely eradicated and managed honeybees only survive through mite control treatment, or otherwise die within 1-2 years. These treatments remove the selective pressure necessary to establish a stable host-parasite relationship, which hampers the evolution of resistance and obstructs fundamental research on natural selection host‒parasite coevolution in this new host‒parasite system, which is now only possible in a few small honeybee populations surviving long-term (>20 years) without varroa control in Sweden, France and Norway. These rare and valuable naturally selected populations offer unique insight into the natural adaptive capacity of honeybees, yet little is understood about their mechanisms of resistance or tolerance to varroa mites and the viruses they vector.
Having exclusive access to these populations, the BEE NATURAL project sets out to comprehensively describe their host resistant and tolerant phenotypes towards both mites and viruses, using a variety of innovative experimental designs, in order to deeper our fundamental understanding of host-parasite interactions. Genomic regions or target genes associated with resistant and tolerant traits will be identified using Next Generation Sequencing (NGS) technologies such as RNA-seq and whole genome sequencing (WGS), providing valuable information that can be applied towards developing marker-assisted selection: a powerful new approach for disease resistant breeding that can facilitate major advances in genetic stock improvement.
Summary
The ectoparasitic mite, Varroa destructor, vectors lethal honeybee viruses, in particular Deformed wing virus (DWV) and is unarguably the leading cause of honeybee (Apis mellifera) colony mortality world-wide causing critical economic and ecological consequences for pollination-dependent crop production and wild plant biodiversity, respectively. Since the introduction of the mite in the 1970s and 1980s, wild honeybees in Europe and North America have been nearly completely eradicated and managed honeybees only survive through mite control treatment, or otherwise die within 1-2 years. These treatments remove the selective pressure necessary to establish a stable host-parasite relationship, which hampers the evolution of resistance and obstructs fundamental research on natural selection host‒parasite coevolution in this new host‒parasite system, which is now only possible in a few small honeybee populations surviving long-term (>20 years) without varroa control in Sweden, France and Norway. These rare and valuable naturally selected populations offer unique insight into the natural adaptive capacity of honeybees, yet little is understood about their mechanisms of resistance or tolerance to varroa mites and the viruses they vector.
Having exclusive access to these populations, the BEE NATURAL project sets out to comprehensively describe their host resistant and tolerant phenotypes towards both mites and viruses, using a variety of innovative experimental designs, in order to deeper our fundamental understanding of host-parasite interactions. Genomic regions or target genes associated with resistant and tolerant traits will be identified using Next Generation Sequencing (NGS) technologies such as RNA-seq and whole genome sequencing (WGS), providing valuable information that can be applied towards developing marker-assisted selection: a powerful new approach for disease resistant breeding that can facilitate major advances in genetic stock improvement.
Max ERC Funding
1 499 703 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym BEHAVIORAL THEORY
Project Behavioral Theory and Economic Applications
Researcher (PI) Botond Koszegi
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Country Hungary
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary "This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Summary
"This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Max ERC Funding
1 275 448 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym BELIEFS
Project Beliefs and Gender Inequality
Researcher (PI) Teodora Boneva
Host Institution (HI) UNIVERSITAT ZURICH
Country Switzerland
Call Details Starting Grant (StG), SH1, ERC-2020-STG
Summary There are large differences in earnings between men and women. Recent work highlights the importance of parenthood for the existence of gender inequality in the labour market. Estimates of the long-run ‘child penalty’, i.e. the impact of having children on women’s relative to men’s earnings, are large and vary substantially across countries. Neither the existence of child penalties nor the striking cross-country variation in child penalties is well understood. BELIEFS will collect a representative dataset of 80,000 individuals in the 28 EU Member States to study the role of several factors in explaining the cross-country differences in child penalties. It will examine the role of (i) beliefs about the benefits/costs to fertility and labour supply decisions, (ii) preferences for having children and for work/leisure, (iii) constraints, and (iv) social norms. BELIEFS will explore different dimensions of heterogeneity and study the individual-level (gender, age etc.) and country-level (labour regulations, family policies etc.) determinants of these factors. It will study whether there are misperceptions of norms and identify whether informing individuals of prevalent social norms shifts their beliefs about the benefits/costs to men/women working and their support for public policies. BELIEFS examines educational, fertility and labour supply decisions in a dynamic life-cycle framework and explores the role of beliefs, preferences, constraints and norms in those decisions. The dynamic framework will also be used to study the role of perceived child penalties in explaining fertility and educational choices. The project is highly ambitious in its scope and it is highly innovative in its combination of research methods. Ultimately, this research agenda will shed light on what drives gender gaps in labour market outcomes as well as which policies may be effective in narrowing these gaps.
Summary
There are large differences in earnings between men and women. Recent work highlights the importance of parenthood for the existence of gender inequality in the labour market. Estimates of the long-run ‘child penalty’, i.e. the impact of having children on women’s relative to men’s earnings, are large and vary substantially across countries. Neither the existence of child penalties nor the striking cross-country variation in child penalties is well understood. BELIEFS will collect a representative dataset of 80,000 individuals in the 28 EU Member States to study the role of several factors in explaining the cross-country differences in child penalties. It will examine the role of (i) beliefs about the benefits/costs to fertility and labour supply decisions, (ii) preferences for having children and for work/leisure, (iii) constraints, and (iv) social norms. BELIEFS will explore different dimensions of heterogeneity and study the individual-level (gender, age etc.) and country-level (labour regulations, family policies etc.) determinants of these factors. It will study whether there are misperceptions of norms and identify whether informing individuals of prevalent social norms shifts their beliefs about the benefits/costs to men/women working and their support for public policies. BELIEFS examines educational, fertility and labour supply decisions in a dynamic life-cycle framework and explores the role of beliefs, preferences, constraints and norms in those decisions. The dynamic framework will also be used to study the role of perceived child penalties in explaining fertility and educational choices. The project is highly ambitious in its scope and it is highly innovative in its combination of research methods. Ultimately, this research agenda will shed light on what drives gender gaps in labour market outcomes as well as which policies may be effective in narrowing these gaps.
Max ERC Funding
1 496 957 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym BINDING FIBRES
Project Soluble dietary fibre: unraveling how weak bonds have a strong impact on function
Researcher (PI) Laura Nystroem
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Summary
Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2022-03-31
Project acronym BRAINGAIN
Project NOVEL STRATEGIES FOR BRAIN REGENERATION
Researcher (PI) Andras Simon
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary In contrast to mammals, newts possess exceptional capacities among vertebrates to rebuild complex structures, such as the brain. Our goal is to bridge the gap in the regenerative outcomes between newts and mammals. My group has made significant contributions towards this goal. We created a novel experimental system, which recapitulates central features of Parkinson’s disease in newts, and provides a unique model for understanding regeneration in the adult midbrain. We showed an unexpected but key feature of the newt brain that it is akin to the mammalian brain in terms of the extent of homeostatic cell turn over, but distinct in terms of its injury response, showing the regenerative capacity of the adult vertebrate brain by activating neurogenesis in normally quiescent regions. Further we established a critical role for the neurotransmitter dopamine in controlling quiescence in the midbrain, thereby preventing neurogenesis during homeostasis and terminating neurogenesis once the correct number of neurons has been produced during regeneration. Here we aim to identify key molecular pathways that regulate adult neurogenesis, to define lineage relationships between neuronal stem and progenitor cells, and to identify essential differences between newts and mammals. We will combine pharmacological modulation of neurotransmitter signaling with extensive cellular fate mapping approaches, and molecular manipulations. Ultimately we will test hypotheses derived from newt studies with mammalian systems including newt/mouse cross species complementation approaches. We expect that our findings will provide new regenerative strategies, and reveal fundamental aspects of cell fate determination, tissue growth, and tissue maintenance in normal and pathological conditions.
Summary
In contrast to mammals, newts possess exceptional capacities among vertebrates to rebuild complex structures, such as the brain. Our goal is to bridge the gap in the regenerative outcomes between newts and mammals. My group has made significant contributions towards this goal. We created a novel experimental system, which recapitulates central features of Parkinson’s disease in newts, and provides a unique model for understanding regeneration in the adult midbrain. We showed an unexpected but key feature of the newt brain that it is akin to the mammalian brain in terms of the extent of homeostatic cell turn over, but distinct in terms of its injury response, showing the regenerative capacity of the adult vertebrate brain by activating neurogenesis in normally quiescent regions. Further we established a critical role for the neurotransmitter dopamine in controlling quiescence in the midbrain, thereby preventing neurogenesis during homeostasis and terminating neurogenesis once the correct number of neurons has been produced during regeneration. Here we aim to identify key molecular pathways that regulate adult neurogenesis, to define lineage relationships between neuronal stem and progenitor cells, and to identify essential differences between newts and mammals. We will combine pharmacological modulation of neurotransmitter signaling with extensive cellular fate mapping approaches, and molecular manipulations. Ultimately we will test hypotheses derived from newt studies with mammalian systems including newt/mouse cross species complementation approaches. We expect that our findings will provide new regenerative strategies, and reveal fundamental aspects of cell fate determination, tissue growth, and tissue maintenance in normal and pathological conditions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-02-01, End date: 2017-01-31