Project acronym NMU-LIPIDS
Project Biomimetic Lipid Structures on Nano- and Microfluidic Platforms
Researcher (PI) Petra Stephanie Dittrich
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary The projects aim at the formation, manipulation, and analysis of three-dimensional lipid membrane structures on micro- and nano-structured platforms. The goal is to develop a novel methodology to design and create simple artificial cells and cell organelles, bio-hybrid cells, and bio-mimicking membrane networks, which could be an entirely novel tool for cell analysis, and promises fascinating prospects for cell manipulation, biotechnology, pharmacy and material sciences. The basis of the projects is formed by an unconventional concept that involves two current cutting-edge fabrication technologies, i.e. the so-called top-down and bottom-up approaches. The combination of the two approaches, with respect to both engineering methods and biological applications, opens the door to overcome current limitations in the creation of complex soft matter objects in micro- and nanometre dimension. The key method is a recently developed micro-extrusion process. It relies, on the one hand, on the ability of the lipid molecules to self-assemble (“bottom-up”). On the other hand, photolithography processes (“top-down”) are utilized to fabricate microchips, in which shape transformation, handling and analysis of the lipid structures are performed. The proposed engineering process will enable, for the first time, to precisely design composition, size and morphology of complex membrane structures. It will provide the requirements to design an artificial cell of reasonable complexity (“bottom-up”). One main emphasis is the creation of unique bio-hybrid systems, in which artificial membrane structures are connected to living cells, or in which natural membranes of cells are integrated within artificial systems (“top-down”). This highly interdisciplinary study will further include fundamental studies on membrane properties, engineering aspects to generate novel soft-matter devices, and the development of analytical methods and lipid sensors based on micro- and nanostructured chips.
Summary
The projects aim at the formation, manipulation, and analysis of three-dimensional lipid membrane structures on micro- and nano-structured platforms. The goal is to develop a novel methodology to design and create simple artificial cells and cell organelles, bio-hybrid cells, and bio-mimicking membrane networks, which could be an entirely novel tool for cell analysis, and promises fascinating prospects for cell manipulation, biotechnology, pharmacy and material sciences. The basis of the projects is formed by an unconventional concept that involves two current cutting-edge fabrication technologies, i.e. the so-called top-down and bottom-up approaches. The combination of the two approaches, with respect to both engineering methods and biological applications, opens the door to overcome current limitations in the creation of complex soft matter objects in micro- and nanometre dimension. The key method is a recently developed micro-extrusion process. It relies, on the one hand, on the ability of the lipid molecules to self-assemble (“bottom-up”). On the other hand, photolithography processes (“top-down”) are utilized to fabricate microchips, in which shape transformation, handling and analysis of the lipid structures are performed. The proposed engineering process will enable, for the first time, to precisely design composition, size and morphology of complex membrane structures. It will provide the requirements to design an artificial cell of reasonable complexity (“bottom-up”). One main emphasis is the creation of unique bio-hybrid systems, in which artificial membrane structures are connected to living cells, or in which natural membranes of cells are integrated within artificial systems (“top-down”). This highly interdisciplinary study will further include fundamental studies on membrane properties, engineering aspects to generate novel soft-matter devices, and the development of analytical methods and lipid sensors based on micro- and nanostructured chips.
Max ERC Funding
1 941 000 €
Duration
Start date: 2008-07-01, End date: 2014-06-30
Project acronym OLFACTORYIGLURS
Project Olfactory perception in Drosophila: analysis of a novel iGluR-related family of odorant receptors
Researcher (PI) Richard Benton
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Summary
Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Max ERC Funding
1 500 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30