Project acronym BICAEHFID
Project Biogeographic and cultural adaptations of early humans during the first intercontinental dispersals
Researcher (PI) Ignacio DE LA TORRE
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Summary
Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Max ERC Funding
2 499 996 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym SILK-EYE
Project Silk-based ocular implants: treating eye conditions at the interface of photonics and biology
Researcher (PI) Susana Marcos Celestino
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Prevalent eye diseases, such as myopia, presbyopia, and corneal disease affect millions worldwide, but for now cannot be prevented. Surgical interventions of these conditions are turning to additive surgery, exemplified by corneal implants or the replacement of the natural crystalline lens by (or addition of) an intraocular lens, as it reduces complications of tissue removal surgeries.
Current eye treatments involving adding tissue or lenses exist in the form of amnion bandages, corneal inlays, and intraocular lenses. However, those approaches suffer from a number of shortcomings: corneal haze or rejection; risk of disease transmission, short lifespan, need of cryopreservation and donor tissue; lack of compliance of lens designs and biomaterials. In particular, no material has been found that fully meets the requirements for mechanical properties, transparency, biocompatibility and versatility for applications in the cornea and in accommodating intraocular lenses.
In recent years, silk fibroin derived from silkworm cocoons has emerged as a protein polymer for biomaterial applications. SILK-EYE will develop a new generation of corneal and intraocular implants, using silk-based materials tuned to each specific application and light enabling procedure. The silk-based implants will feature both the accessibility advantages of synthetic materials and the structural and biocompatibility properties of allografts, capitalizing on silk’s unique potential for transparency, controllable stiffness and degradability, refractive index and permeability, and their potential for light-induced cross-linking and bonding in the eye. SILK-EYE will design radically novel corneal dressings and implants, and accommodating intraocular lenses that are more biocompatible and functional than current synthetic implants, and are safer, more tunable, accessible and affordable than donor allografts, potentially revolutionizing how the major corrective procedures in ophthalmology are performed.
Summary
Prevalent eye diseases, such as myopia, presbyopia, and corneal disease affect millions worldwide, but for now cannot be prevented. Surgical interventions of these conditions are turning to additive surgery, exemplified by corneal implants or the replacement of the natural crystalline lens by (or addition of) an intraocular lens, as it reduces complications of tissue removal surgeries.
Current eye treatments involving adding tissue or lenses exist in the form of amnion bandages, corneal inlays, and intraocular lenses. However, those approaches suffer from a number of shortcomings: corneal haze or rejection; risk of disease transmission, short lifespan, need of cryopreservation and donor tissue; lack of compliance of lens designs and biomaterials. In particular, no material has been found that fully meets the requirements for mechanical properties, transparency, biocompatibility and versatility for applications in the cornea and in accommodating intraocular lenses.
In recent years, silk fibroin derived from silkworm cocoons has emerged as a protein polymer for biomaterial applications. SILK-EYE will develop a new generation of corneal and intraocular implants, using silk-based materials tuned to each specific application and light enabling procedure. The silk-based implants will feature both the accessibility advantages of synthetic materials and the structural and biocompatibility properties of allografts, capitalizing on silk’s unique potential for transparency, controllable stiffness and degradability, refractive index and permeability, and their potential for light-induced cross-linking and bonding in the eye. SILK-EYE will design radically novel corneal dressings and implants, and accommodating intraocular lenses that are more biocompatible and functional than current synthetic implants, and are safer, more tunable, accessible and affordable than donor allografts, potentially revolutionizing how the major corrective procedures in ophthalmology are performed.
Max ERC Funding
2 499 610 €
Duration
Start date: 2020-01-01, End date: 2024-12-31