Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Country Cyprus
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym BICAEHFID
Project Biogeographic and cultural adaptations of early humans during the first intercontinental dispersals
Researcher (PI) Ignacio DE LA TORRE
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Summary
Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Max ERC Funding
2 499 996 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym CEAD
Project Contextualizing Evidence for Action on Diabetes in low-resource Settings: A mixed-methods case study in Quito and Esmeraldas, Ecuador.
Researcher (PI) Lucy Anne Parker
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Summary
The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Max ERC Funding
1 475 334 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym LArcHer
Project Breaking barriers between Science and Heritage approaches to Levantine Rock Art through Archaeology, Heritage Science and IT
Researcher (PI) Ines DOMINGO SANZ
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Summary
LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Max ERC Funding
1 991 178 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym MULTIPALEOIBERIA
Project Population dynamics and cultural adaptations of the last Neandertals and first Modern humans in inland Iberia: a multi-proxy investigation
Researcher (PI) Manuel ALCARAZ-CASTAnO
Host Institution (HI) UNIVERSIDAD DE ALCALA
Country Spain
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Summary
The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Max ERC Funding
1 387 515 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ReadCalibration
Project Phonemic representations in speech perception and production: Recalibration by readingacquisition
Researcher (PI) Clara, Dominique, Sylvie Martin
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Country Spain
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary The main goal of this project is to demonstrate that reading acquisition (RA) drastically reshapes our phonemic inventory, and to investigate the time-course and fine-grained properties of this recalibration. The main innovative and ground-breaking aspect of this project is the merging of two research fields, (1) reading acquisition and (2) phonemic recalibration, together with a deep and extensive exploration of the (3) perception-production link, which results in a new research line that pushes the boundaries of our understanding of the complex interactions between auditory and visual language perception and production.
We will demonstrate that phonemic representations (PRs) become more stable (less dispersed) during the process of learning to read, and that this recalibration varies according to the grapheme-phoneme conversion rules of the reading system. We will explore such recalibration by means of the first cross-linguistic longitudinal study examining the position and dispersion of PRs, both in perception and production of phonemes and words. Secondly, we will explore how recalibration develops when RA is impaired as is the case in dyslexic children –informing the research field on (4) dyslexia– and when pre-reading PRs are unstable as is the case in deaf children with cochlear implants –informing the research field on (5) deafness. Finally, the research will also be extended to PR recalibration during RA in a second language –informing the research on (6) bilingualism.
This proposal provides the first systematic investigation of phonemic recalibration during literacy acquisition, and will provide important insight for pragmatic research and theoretical accounts of language perception and production and phonemic recalibration. This project will also have major implications for the clinical field (theories and remediation of dyslexia and deafness) and for social policies and education (bilingualism, spoken and written language teaching).
Summary
The main goal of this project is to demonstrate that reading acquisition (RA) drastically reshapes our phonemic inventory, and to investigate the time-course and fine-grained properties of this recalibration. The main innovative and ground-breaking aspect of this project is the merging of two research fields, (1) reading acquisition and (2) phonemic recalibration, together with a deep and extensive exploration of the (3) perception-production link, which results in a new research line that pushes the boundaries of our understanding of the complex interactions between auditory and visual language perception and production.
We will demonstrate that phonemic representations (PRs) become more stable (less dispersed) during the process of learning to read, and that this recalibration varies according to the grapheme-phoneme conversion rules of the reading system. We will explore such recalibration by means of the first cross-linguistic longitudinal study examining the position and dispersion of PRs, both in perception and production of phonemes and words. Secondly, we will explore how recalibration develops when RA is impaired as is the case in dyslexic children –informing the research field on (4) dyslexia– and when pre-reading PRs are unstable as is the case in deaf children with cochlear implants –informing the research field on (5) deafness. Finally, the research will also be extended to PR recalibration during RA in a second language –informing the research on (6) bilingualism.
This proposal provides the first systematic investigation of phonemic recalibration during literacy acquisition, and will provide important insight for pragmatic research and theoretical accounts of language perception and production and phonemic recalibration. This project will also have major implications for the clinical field (theories and remediation of dyslexia and deafness) and for social policies and education (bilingualism, spoken and written language teaching).
Max ERC Funding
1 875 000 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym RIVERS
Project Water/human rights beyond the human? Indigenous water ontologies, plurilegal encounters and interlegal translation
Researcher (PI) Lieselotte VIAENE
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Summary
RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Max ERC Funding
1 498 446 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym SUBSILIENCE
Project Subsistence and human resilience to sudden climatic events in Europe during MIS3
Researcher (PI) ANA B. MARIN-ARROYO
Host Institution (HI) UNIVERSIDAD DE CANTABRIA
Country Spain
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary Climate has long been proposed as a possible trigger-factor for the extinction of Neanderthals and the rapid colonization of Europe by Anatomically Modern Humans (AMH). Abrupt and acute oscillations of climate, as recorded from polar ice sheets, are particularly threatening as they can push ecosystems towards catastrophic outcomes. Under these conditions, the survival of a species critically depends on their adaptive skills. Understanding the exact role that these episodes could have had in the Middle to Upper Palaeolithic transition is then essential to unravel the real causes of Neanderthal demise and AMH success. To do this, SUBSILIENCE will identify the subsistence strategies adopted by both human species in response to those climatic changes at 20 key archaeological sites located across southern European peninsulas. By applying zooarchaeological and taphonomic analyses, the behavioural flexibility and resilience of each human species will be assessed. In addition, to enable effective testing, local terrestrial climatic and environmental conditions will be accurately reconstructed using stable isotopes from animals consumed, producing a unique, continuous and properly-dated general environmental framework, improving existing knowledge. Finally, to further explore the problem, an innovative procedure to estimate prey abundance, ecology and human behaviour, involving the estimation of the ecosystem carrying capacity, will be developed. This multidisciplinary and novel approach will provide, for the first time, accurate answers to questions concerning a) which particular subsistence patterns (if any) favoured AMH over Neanderthals while coping with the changing environment and b) the extent to which climatic oscillations affected Neanderthal extinction. In this, it will be of relevance to the study of Prehistory on a pan-European scale.
Summary
Climate has long been proposed as a possible trigger-factor for the extinction of Neanderthals and the rapid colonization of Europe by Anatomically Modern Humans (AMH). Abrupt and acute oscillations of climate, as recorded from polar ice sheets, are particularly threatening as they can push ecosystems towards catastrophic outcomes. Under these conditions, the survival of a species critically depends on their adaptive skills. Understanding the exact role that these episodes could have had in the Middle to Upper Palaeolithic transition is then essential to unravel the real causes of Neanderthal demise and AMH success. To do this, SUBSILIENCE will identify the subsistence strategies adopted by both human species in response to those climatic changes at 20 key archaeological sites located across southern European peninsulas. By applying zooarchaeological and taphonomic analyses, the behavioural flexibility and resilience of each human species will be assessed. In addition, to enable effective testing, local terrestrial climatic and environmental conditions will be accurately reconstructed using stable isotopes from animals consumed, producing a unique, continuous and properly-dated general environmental framework, improving existing knowledge. Finally, to further explore the problem, an innovative procedure to estimate prey abundance, ecology and human behaviour, involving the estimation of the ecosystem carrying capacity, will be developed. This multidisciplinary and novel approach will provide, for the first time, accurate answers to questions concerning a) which particular subsistence patterns (if any) favoured AMH over Neanderthals while coping with the changing environment and b) the extent to which climatic oscillations affected Neanderthal extinction. In this, it will be of relevance to the study of Prehistory on a pan-European scale.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym TRADITION
Project Long-term coastal adaptation, food security and poverty alleviation in Latin America
Researcher (PI) Andre Carlo COLONESE
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary TRADITION aims to understand the long-term trajectory of human interaction with coastal resources and its legacy to present day small-scale fisheries in Latin America. Founded on traditional knowledge rooted in the past, small-scale fisheries are a crucial source of food and livelihood for millions of people worldwide, and play a pivotal role in poverty eradication in developing countries. A thorough recognition of the cultural and socio-economic significance of Latin American fisheries requires a temporal component that only archaeology and history can provide. TRADITION will investigate a 4000-year record of coastal exploitation in one of the world's most threatened tropical environments: the Atlantic forest of Brazil. We will draw together archaeological, palaeoecological, historical and ethnographic records to address fundamental questions that impinge upon our current understanding of the development of small-scale fisheries in this region. How did coastal economies adapt to the spread of agriculture? What was the impact of past climate and environmental changes on coastal populations? What was the impact of European colonisation of the Americas on the development of small-scale fisheries? What was the role of historical institutions and regulations in the negotiation between traditional and modern practices in small-scale fisheries? How have the historical practices and events shaped current small-scale coastal communities, and can this knowledge benefit current management strategies. The answers will help us understand how coastal economies responded to unprecedented societal and environmental changes by adapting their subsistence practices, technology and culture, while contributing to the foundation of coastal societies in Latin America.
Summary
TRADITION aims to understand the long-term trajectory of human interaction with coastal resources and its legacy to present day small-scale fisheries in Latin America. Founded on traditional knowledge rooted in the past, small-scale fisheries are a crucial source of food and livelihood for millions of people worldwide, and play a pivotal role in poverty eradication in developing countries. A thorough recognition of the cultural and socio-economic significance of Latin American fisheries requires a temporal component that only archaeology and history can provide. TRADITION will investigate a 4000-year record of coastal exploitation in one of the world's most threatened tropical environments: the Atlantic forest of Brazil. We will draw together archaeological, palaeoecological, historical and ethnographic records to address fundamental questions that impinge upon our current understanding of the development of small-scale fisheries in this region. How did coastal economies adapt to the spread of agriculture? What was the impact of past climate and environmental changes on coastal populations? What was the impact of European colonisation of the Americas on the development of small-scale fisheries? What was the role of historical institutions and regulations in the negotiation between traditional and modern practices in small-scale fisheries? How have the historical practices and events shaped current small-scale coastal communities, and can this knowledge benefit current management strategies. The answers will help us understand how coastal economies responded to unprecedented societal and environmental changes by adapting their subsistence practices, technology and culture, while contributing to the foundation of coastal societies in Latin America.
Max ERC Funding
1 877 107 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym URBAG
Project Integrated System Analysis of Urban Vegetation and Agriculture
Researcher (PI) Gara Villalba Mendez
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary This research aims to find out how urban green infrastructures can be most efficient in contributing to urban sustainability. This will evaluate which combinations of urban, peri-urban agriculture and green spaces result in the best performance in terms of local and global environmental impact.
For this purpose, I will use novel and comprehensive analysis that will integrate the life cycle impacts of the resources required for green infrastructures with the understanding of how green infrastructures impact the urban atmosphere interaction. This comprehensive approach allows to capture the urban metabolism to optimize the food-energy-water nexus. In previous works, the impacts had been only studied individually.
The analysis will consist of 1) A geo-referenced land-use model to optimize urban and peri-urban food production in terms of nutrients, water, and energy, considering urban morphology and determining life cycle impacts 2) A spatially-temporally resolved framework for quantitative analysis and simulation of green infrastructures to determine the direct and indirect effects on the urban and regional atmosphere. The research will be implemented in two selected cities with different profiles, Barcelona and Oslo. The study ambitions to gather substantial quantitative evidence in green infrastructures and sustainability, contributing to cover the existing gap in previous works.
This project and the envisaged: Green infrastructures - A Guide for city planners and policy makers, are timely and urgent. Many cities are implementing green infrastructures despite having little quantitative and comprehensive knowledge as to which infrastructure strategies are more effective in promoting food production, air quality and temperature while reducing environmental impact. This intended Guide will contain evidence-based guidance and tools to create green infrastructure strategies; to help to meet sustainability targets, and promote wider and diffused social benefits.
Summary
This research aims to find out how urban green infrastructures can be most efficient in contributing to urban sustainability. This will evaluate which combinations of urban, peri-urban agriculture and green spaces result in the best performance in terms of local and global environmental impact.
For this purpose, I will use novel and comprehensive analysis that will integrate the life cycle impacts of the resources required for green infrastructures with the understanding of how green infrastructures impact the urban atmosphere interaction. This comprehensive approach allows to capture the urban metabolism to optimize the food-energy-water nexus. In previous works, the impacts had been only studied individually.
The analysis will consist of 1) A geo-referenced land-use model to optimize urban and peri-urban food production in terms of nutrients, water, and energy, considering urban morphology and determining life cycle impacts 2) A spatially-temporally resolved framework for quantitative analysis and simulation of green infrastructures to determine the direct and indirect effects on the urban and regional atmosphere. The research will be implemented in two selected cities with different profiles, Barcelona and Oslo. The study ambitions to gather substantial quantitative evidence in green infrastructures and sustainability, contributing to cover the existing gap in previous works.
This project and the envisaged: Green infrastructures - A Guide for city planners and policy makers, are timely and urgent. Many cities are implementing green infrastructures despite having little quantitative and comprehensive knowledge as to which infrastructure strategies are more effective in promoting food production, air quality and temperature while reducing environmental impact. This intended Guide will contain evidence-based guidance and tools to create green infrastructure strategies; to help to meet sustainability targets, and promote wider and diffused social benefits.
Max ERC Funding
1 893 754 €
Duration
Start date: 2019-09-01, End date: 2024-08-31