Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Country Cyprus
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym BICAEHFID
Project Biogeographic and cultural adaptations of early humans during the first intercontinental dispersals
Researcher (PI) Ignacio DE LA TORRE
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Summary
Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Max ERC Funding
2 499 996 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym CEAD
Project Contextualizing Evidence for Action on Diabetes in low-resource Settings: A mixed-methods case study in Quito and Esmeraldas, Ecuador.
Researcher (PI) Lucy Anne Parker
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Summary
The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Max ERC Funding
1 475 334 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym FeMiT
Project Ferrites-by-design for Millimeter-wave and Terahertz Technologies
Researcher (PI) MartI GICH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Robust disruptive materials will be essential for the “wireless everywhere” to become a reality. This is because we need a paradigm shift in mobile communications to meet the challenges of such an ambitious evolution. In particular, some of these emerging technologies will trigger the replacement of the magnetic microwave ferrites in use today. This will namely occur with the forecasted shift to high frequency mm-wave and THz bands and in novel antennas that can simultaneously transmit and receive data on the same frequency. In both cases, operating with state-of-the-art ferrites would require large external magnetic fields incompatible with future needs of smaller, power-efficient devices.
To overcome these issues, we target ferrites featuring the so far unmet combinations of low magnetic loss and large values of magnetocrystalline anisotropy, magnetostriction or magnetoelectric coupling.
The objective of FeMiT is developing a novel family of orthorhombic ferrites based on ε-Fe2O3, a room-temperature multiferroic with large magnetocrystalline anisotropy. Those properties and unique structural features make it an excellent platform to develop the sought-after functional materials for future compact and energy-efficient wireless devices.
In the first part of FeMiT we will explore the limits and diversity of this new family by exploiting rational chemical substitutions, high pressures and strain engineering. Soft chemistry and physical deposition methods will be both considered at this stage.
The second part of FeMiT entails a characterization of functional properties and selection of the best candidates to be integrated in composite and epitaxial films suitable for application. The expected outcomes will provide proof-of-concept self-biased or voltage-controlled signal-processing devices with low losses in the mm-wave to THz bands, with high potential impact in the development of future wireless technologies.
Summary
Robust disruptive materials will be essential for the “wireless everywhere” to become a reality. This is because we need a paradigm shift in mobile communications to meet the challenges of such an ambitious evolution. In particular, some of these emerging technologies will trigger the replacement of the magnetic microwave ferrites in use today. This will namely occur with the forecasted shift to high frequency mm-wave and THz bands and in novel antennas that can simultaneously transmit and receive data on the same frequency. In both cases, operating with state-of-the-art ferrites would require large external magnetic fields incompatible with future needs of smaller, power-efficient devices.
To overcome these issues, we target ferrites featuring the so far unmet combinations of low magnetic loss and large values of magnetocrystalline anisotropy, magnetostriction or magnetoelectric coupling.
The objective of FeMiT is developing a novel family of orthorhombic ferrites based on ε-Fe2O3, a room-temperature multiferroic with large magnetocrystalline anisotropy. Those properties and unique structural features make it an excellent platform to develop the sought-after functional materials for future compact and energy-efficient wireless devices.
In the first part of FeMiT we will explore the limits and diversity of this new family by exploiting rational chemical substitutions, high pressures and strain engineering. Soft chemistry and physical deposition methods will be both considered at this stage.
The second part of FeMiT entails a characterization of functional properties and selection of the best candidates to be integrated in composite and epitaxial films suitable for application. The expected outcomes will provide proof-of-concept self-biased or voltage-controlled signal-processing devices with low losses in the mm-wave to THz bands, with high potential impact in the development of future wireless technologies.
Max ERC Funding
1 989 967 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym GEoREST
Project predictinG EaRthquakES induced by fluid injecTion
Researcher (PI) Victor VILARRASA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Fluid injection related to underground resources has become widespread, causing numerous cases of induced seismicity. If felt, induced seismicity has a negative effect on public perception and may jeopardise wellbore stability, which has led to the cancellation of several projects. Forecasting injection-induced earthquakes is a big challenge that must be overcome to deploy geo-energies to significantly reduce CO2 emissions and thus mitigate climate change and reduce related health issues. The basic conjecture is that, while initial (micro)seisms are caused by well-known mechanisms that could be predicted, subsequent activity is caused by harder to understand and, at present, unpredictable coupled thermo-hydro-mechanical-seismic (THMS) processes, which is the reason why available models fail to forecast induced seismicity. The objective of this project is to develop a novel methodology to predict and mitigate induced seismicity. We propose an interdisciplinary approach that integrates the THMS processes that occur in the subsurface as a result of fluid injection. The methodology, based on new analytical and numerical solutions, will concentrate on (1) understanding the processes that lead to induced seismicity by model testing of specific conjectures, (2) improving and extending subsurface characterization by using industrial fluid injection operations as a long-term continuous characterization methodology, so as to reduce prediction uncertainty, and (3) using the resulting understanding and site specific knowledge to predict and mitigate induced seismicity. Project developments will be tested and verified against fluid-induced seismicity at field sites that present diverse characteristics. Arguably, the successful development of this project will provide operators with concepts and tools to perform pressure management to reduce the risk of inducing seismicity to acceptable levels and thus, improve safety and reverse public perception on fluid injection activities.
Summary
Fluid injection related to underground resources has become widespread, causing numerous cases of induced seismicity. If felt, induced seismicity has a negative effect on public perception and may jeopardise wellbore stability, which has led to the cancellation of several projects. Forecasting injection-induced earthquakes is a big challenge that must be overcome to deploy geo-energies to significantly reduce CO2 emissions and thus mitigate climate change and reduce related health issues. The basic conjecture is that, while initial (micro)seisms are caused by well-known mechanisms that could be predicted, subsequent activity is caused by harder to understand and, at present, unpredictable coupled thermo-hydro-mechanical-seismic (THMS) processes, which is the reason why available models fail to forecast induced seismicity. The objective of this project is to develop a novel methodology to predict and mitigate induced seismicity. We propose an interdisciplinary approach that integrates the THMS processes that occur in the subsurface as a result of fluid injection. The methodology, based on new analytical and numerical solutions, will concentrate on (1) understanding the processes that lead to induced seismicity by model testing of specific conjectures, (2) improving and extending subsurface characterization by using industrial fluid injection operations as a long-term continuous characterization methodology, so as to reduce prediction uncertainty, and (3) using the resulting understanding and site specific knowledge to predict and mitigate induced seismicity. Project developments will be tested and verified against fluid-induced seismicity at field sites that present diverse characteristics. Arguably, the successful development of this project will provide operators with concepts and tools to perform pressure management to reduce the risk of inducing seismicity to acceptable levels and thus, improve safety and reverse public perception on fluid injection activities.
Max ERC Funding
1 438 201 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym HELD
Project Hetero-structures for Efficient Luminescent Devices
Researcher (PI) Hendrik Jan BOLINK
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary We propose to engineer stable-highly luminescent heterostructures based on defect tolerant benign perovskites and their integration into efficient planar/thin film optoelectronic devices. Primary targeted devices are: blue and white planar electroluminescent devices, high efficiency solar cells and electrically pumped lasers.
We will use processing methods that are compatible with large area industrial processes, in particular focusing on vapour deposition using thermal sublimation of the perovskite precursors. The boundaries of this simple, scalable and economic coating method will be determined using an advanced real time in-situ optical monitoring system based on hyperspectral imaging. This tool will unveil the limits and processing conditions for the preparation of uniform and very thin (< 10 nm) crystalline thin-film semiconductors.
We will also attempt to replace the toxic lead in today’s most studied perovskite materials, by less toxic materials such as tin and silver/bismuth mixtures. Here vacuum based processing is beneficial in view of the limited air-stability and solubility of their pre-cursor salts.
Accurate vapour deposition methods will allow the fabrication of perovskites in multiple layered heterostructures (MLH) that passivate the perovskite crystal boundaries. This will increase their thermal and structural stability and above all their photoluminescence efficiency. With the sophisticated processing control, multiple quantum wells (MQWs) will be engineered. MQWs are promising for light-emitting devices, in particular for lasers.
The impact of the project is large on various fields ranging from processes, materials and device engineering, physics, and energy. High efficiency, planar LEDs and solar cells, can shift the energy landscape and strongly help to meet the worlds CO2 reduction targets. The demonstration of electrically pumped lasing in easily processed thin film semiconductors will generate so far un-available fields of science.
Summary
We propose to engineer stable-highly luminescent heterostructures based on defect tolerant benign perovskites and their integration into efficient planar/thin film optoelectronic devices. Primary targeted devices are: blue and white planar electroluminescent devices, high efficiency solar cells and electrically pumped lasers.
We will use processing methods that are compatible with large area industrial processes, in particular focusing on vapour deposition using thermal sublimation of the perovskite precursors. The boundaries of this simple, scalable and economic coating method will be determined using an advanced real time in-situ optical monitoring system based on hyperspectral imaging. This tool will unveil the limits and processing conditions for the preparation of uniform and very thin (< 10 nm) crystalline thin-film semiconductors.
We will also attempt to replace the toxic lead in today’s most studied perovskite materials, by less toxic materials such as tin and silver/bismuth mixtures. Here vacuum based processing is beneficial in view of the limited air-stability and solubility of their pre-cursor salts.
Accurate vapour deposition methods will allow the fabrication of perovskites in multiple layered heterostructures (MLH) that passivate the perovskite crystal boundaries. This will increase their thermal and structural stability and above all their photoluminescence efficiency. With the sophisticated processing control, multiple quantum wells (MQWs) will be engineered. MQWs are promising for light-emitting devices, in particular for lasers.
The impact of the project is large on various fields ranging from processes, materials and device engineering, physics, and energy. High efficiency, planar LEDs and solar cells, can shift the energy landscape and strongly help to meet the worlds CO2 reduction targets. The demonstration of electrically pumped lasing in easily processed thin film semiconductors will generate so far un-available fields of science.
Max ERC Funding
2 499 175 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym LArcHer
Project Breaking barriers between Science and Heritage approaches to Levantine Rock Art through Archaeology, Heritage Science and IT
Researcher (PI) Ines DOMINGO SANZ
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Summary
LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Max ERC Funding
1 991 178 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym MULTIPALEOIBERIA
Project Population dynamics and cultural adaptations of the last Neandertals and first Modern humans in inland Iberia: a multi-proxy investigation
Researcher (PI) Manuel ALCARAZ-CASTAnO
Host Institution (HI) UNIVERSIDAD DE ALCALA
Country Spain
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Summary
The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Max ERC Funding
1 387 515 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ReadCalibration
Project Phonemic representations in speech perception and production: Recalibration by readingacquisition
Researcher (PI) Clara, Dominique, Sylvie Martin
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Country Spain
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary The main goal of this project is to demonstrate that reading acquisition (RA) drastically reshapes our phonemic inventory, and to investigate the time-course and fine-grained properties of this recalibration. The main innovative and ground-breaking aspect of this project is the merging of two research fields, (1) reading acquisition and (2) phonemic recalibration, together with a deep and extensive exploration of the (3) perception-production link, which results in a new research line that pushes the boundaries of our understanding of the complex interactions between auditory and visual language perception and production.
We will demonstrate that phonemic representations (PRs) become more stable (less dispersed) during the process of learning to read, and that this recalibration varies according to the grapheme-phoneme conversion rules of the reading system. We will explore such recalibration by means of the first cross-linguistic longitudinal study examining the position and dispersion of PRs, both in perception and production of phonemes and words. Secondly, we will explore how recalibration develops when RA is impaired as is the case in dyslexic children –informing the research field on (4) dyslexia– and when pre-reading PRs are unstable as is the case in deaf children with cochlear implants –informing the research field on (5) deafness. Finally, the research will also be extended to PR recalibration during RA in a second language –informing the research on (6) bilingualism.
This proposal provides the first systematic investigation of phonemic recalibration during literacy acquisition, and will provide important insight for pragmatic research and theoretical accounts of language perception and production and phonemic recalibration. This project will also have major implications for the clinical field (theories and remediation of dyslexia and deafness) and for social policies and education (bilingualism, spoken and written language teaching).
Summary
The main goal of this project is to demonstrate that reading acquisition (RA) drastically reshapes our phonemic inventory, and to investigate the time-course and fine-grained properties of this recalibration. The main innovative and ground-breaking aspect of this project is the merging of two research fields, (1) reading acquisition and (2) phonemic recalibration, together with a deep and extensive exploration of the (3) perception-production link, which results in a new research line that pushes the boundaries of our understanding of the complex interactions between auditory and visual language perception and production.
We will demonstrate that phonemic representations (PRs) become more stable (less dispersed) during the process of learning to read, and that this recalibration varies according to the grapheme-phoneme conversion rules of the reading system. We will explore such recalibration by means of the first cross-linguistic longitudinal study examining the position and dispersion of PRs, both in perception and production of phonemes and words. Secondly, we will explore how recalibration develops when RA is impaired as is the case in dyslexic children –informing the research field on (4) dyslexia– and when pre-reading PRs are unstable as is the case in deaf children with cochlear implants –informing the research field on (5) deafness. Finally, the research will also be extended to PR recalibration during RA in a second language –informing the research on (6) bilingualism.
This proposal provides the first systematic investigation of phonemic recalibration during literacy acquisition, and will provide important insight for pragmatic research and theoretical accounts of language perception and production and phonemic recalibration. This project will also have major implications for the clinical field (theories and remediation of dyslexia and deafness) and for social policies and education (bilingualism, spoken and written language teaching).
Max ERC Funding
1 875 000 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym RIVERS
Project Water/human rights beyond the human? Indigenous water ontologies, plurilegal encounters and interlegal translation
Researcher (PI) Lieselotte VIAENE
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Summary
RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Max ERC Funding
1 498 446 €
Duration
Start date: 2019-05-01, End date: 2024-04-30