Project acronym BICAEHFID
Project Biogeographic and cultural adaptations of early humans during the first intercontinental dispersals
Researcher (PI) Ignacio DE LA TORRE
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Summary
Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Max ERC Funding
2 499 996 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym CancerADAPT
Project Targeting the adaptive capacity of prostate cancer through the manipulation of transcriptional and metabolic traits
Researcher (PI) Arkaitz CARRACEDO PEREZ
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Country Spain
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Summary
The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Max ERC Funding
1 999 882 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym CEAD
Project Contextualizing Evidence for Action on Diabetes in low-resource Settings: A mixed-methods case study in Quito and Esmeraldas, Ecuador.
Researcher (PI) Lucy Anne Parker
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Summary
The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Max ERC Funding
1 475 334 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym KryptonInt
Project Erasing the superintegron to understand the role of chromosomal integrons in bacterial evolution
Researcher (PI) Jose Antonio ESCUDERO
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Country Spain
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Integrons are genetic platforms that enhance bacterial evolvability through the acquisition and stockpiling of new genes encoded in mobile elements named cassettes. They are found in the chromosomes of environmental bacteria but some have acquired mobility through their association to transposons and conjugative plasmids. These mobile integrons (MI) caused the unexpected rise of multidrug resistance that is now a major threat to modern medicine, and are good proof of the adaptive power of integrons. Class 1 integrons are the most relevant MI and the major experimental model. Yet little is known about the hundreds of sedentary chromosomal integrons (SCI) that have driven bacterial evolution for eons. The paradigm of SCI is the superintegron (SI), an extremely large integron located in the chromosome of Vibrio cholerae, the causative agent of Cholera disease. Despite its role in the adaptability of one of the deadliest pathogens in history, the SI is poorly characterized because it is only functional in its native genetic background, yet its presence interferes with, and precludes all studies performed in V. cholerae. I propose to solve this paradoxical situation by deleting the SI, an ambitious project not only for its size (126 Kb) but because it is highly stabilized by 17 toxin-antitoxin systems. To do so, I have developed SeqDelTA, a novel method that is already giving excellent preliminary results. I will then use V. cholerae∆SI to study fundamental aspects of SCIs, yet out of reach. I will elucidate the functions encoded in SI cassettes to understand the role and adaptive value of integrons in nature; I will also unravel the genesis of cassettes: how a gene is exapted from its genetic context to become a mobile module; and I will explore the circulation of antibiotic resistance cassettes among humans, animals, food, and the environment with a novel biosynthetic tool (the I3C). KryptonInt will open and explore the historically inaccessible field of study of SCIs.
Summary
Integrons are genetic platforms that enhance bacterial evolvability through the acquisition and stockpiling of new genes encoded in mobile elements named cassettes. They are found in the chromosomes of environmental bacteria but some have acquired mobility through their association to transposons and conjugative plasmids. These mobile integrons (MI) caused the unexpected rise of multidrug resistance that is now a major threat to modern medicine, and are good proof of the adaptive power of integrons. Class 1 integrons are the most relevant MI and the major experimental model. Yet little is known about the hundreds of sedentary chromosomal integrons (SCI) that have driven bacterial evolution for eons. The paradigm of SCI is the superintegron (SI), an extremely large integron located in the chromosome of Vibrio cholerae, the causative agent of Cholera disease. Despite its role in the adaptability of one of the deadliest pathogens in history, the SI is poorly characterized because it is only functional in its native genetic background, yet its presence interferes with, and precludes all studies performed in V. cholerae. I propose to solve this paradoxical situation by deleting the SI, an ambitious project not only for its size (126 Kb) but because it is highly stabilized by 17 toxin-antitoxin systems. To do so, I have developed SeqDelTA, a novel method that is already giving excellent preliminary results. I will then use V. cholerae∆SI to study fundamental aspects of SCIs, yet out of reach. I will elucidate the functions encoded in SI cassettes to understand the role and adaptive value of integrons in nature; I will also unravel the genesis of cassettes: how a gene is exapted from its genetic context to become a mobile module; and I will explore the circulation of antibiotic resistance cassettes among humans, animals, food, and the environment with a novel biosynthetic tool (the I3C). KryptonInt will open and explore the historically inaccessible field of study of SCIs.
Max ERC Funding
1 499 516 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym LArcHer
Project Breaking barriers between Science and Heritage approaches to Levantine Rock Art through Archaeology, Heritage Science and IT
Researcher (PI) Ines DOMINGO SANZ
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Summary
LArcHer project aims at pioneering a new and more comprehensive way of understanding one of Europe’s most extraordinary bodies of prehistoric art, awarded Unesco World Heritage status in 1998: Levantine rock art (LRA). The ground-breaking nature of the project relies on combining a multidisciplinary (Archaeology, Heritage Science and IT) and multiscale approach (from microanalysis to landscape perspectives) to gain a holistic view of this art. It also aims at closing existing gaps between science and heritage mainstreams, to better understand the values and threats affecting this tradition and bring about a change in the way we understand, care, use and manage this millenary legacy. LArcHer aims are: a) Use cross-disciplinary knowledge and methods to redefine LRA (i.e. new dating techniques to refine chronology, new analytical methods to understand the creative process); b) Use LRA as a proxy to raise new questions of global interest on the evolution of creative thinking and human cognition (i.e. the timing and driving forces behind the birth of anthropocentrism and visual narratives in the history of prehistoric art); c) Develop new research agendas to set off complementary goals between science and heritage and define best practices for open air rock art conservation and management.
Spread across Mediterranean Iberia, LRA is the only European body of figurative art dominated by humans engaged in dynamic narratives of hunting, violence, warfare, dances and so forth. These scenes are unique to explore past social dynamics, human behaviour and cultural practices. As such, it is the only body of European rock art with potential to answer some of the new questions raised by LArcHer.
Key to LArcHer are the systematic recording and analysis of the art through 3D Digital technologies, management and data storage systems, GIS, physicochemical analysis of pigments and bedrock and comparative analysis with other major bodies of art with equivalent developments.
Max ERC Funding
1 991 178 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym MATRIX
Project Novel mitochondria-targeted therapies for cancer treatment-induced cardiotoxicity
Researcher (PI) Borja Ibanez Cabeza
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONES CARDIOVASCULARES CARLOS III (F.S.P.)
Country Spain
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Cardiac toxicity is one of the most frequent serious side effects of cancer therapy, affecting up to 30% of treated patients. Cancer treatment-induced cardiotoxicity (CTiCT) can result in severe heart failure. The trade-off between cancer and chronic heart failure is an immense personal burden with physical and psychological consequences. Current therapies for CTiCT are suboptimal, featuring poor early detection algorithms and nonspecific heart failure treatments. Based on our recently published results and additional preliminary data presented here, we propose that CTiCT is associated with altered mitochondrial dynamics, triggering a cardiomyocyte metabolic reprogramming. MATRIX represents a holistic approach to tackling mitochondrial dysfunction in CTiCT. Our hypothesis is that reverting metabolic reprogramming by shifting mitochondrial substrate utilization could represent a new paradigm in the treatment of early-stage CTiCT. By refining a novel imaging-based algorithm recently developed in our group, we will achieve very early detection of myocardial damage in patients treated with commonly prescribed cancer therapies, long before clinically used parameters become abnormal. Such early detection, not available currently, is crucial for implementation of early therapies. We also hypothesize that in end-stage CTiCT, mitochondrial dysfunction has passed a no-return point, and the failing heart will only be rescued by a strategy to replenish the myocardium with fresh healthy mitochondria. This will be achieved with a radical new therapeutic option: in-vivo mitochondrial transplantation. The MATRIX project has broad translational potential, including a new therapeutic approach to a clinically relevant condition, the development of technology for early diagnosis, and advances in knowledge of basic disease mechanisms.
Summary
Cardiac toxicity is one of the most frequent serious side effects of cancer therapy, affecting up to 30% of treated patients. Cancer treatment-induced cardiotoxicity (CTiCT) can result in severe heart failure. The trade-off between cancer and chronic heart failure is an immense personal burden with physical and psychological consequences. Current therapies for CTiCT are suboptimal, featuring poor early detection algorithms and nonspecific heart failure treatments. Based on our recently published results and additional preliminary data presented here, we propose that CTiCT is associated with altered mitochondrial dynamics, triggering a cardiomyocyte metabolic reprogramming. MATRIX represents a holistic approach to tackling mitochondrial dysfunction in CTiCT. Our hypothesis is that reverting metabolic reprogramming by shifting mitochondrial substrate utilization could represent a new paradigm in the treatment of early-stage CTiCT. By refining a novel imaging-based algorithm recently developed in our group, we will achieve very early detection of myocardial damage in patients treated with commonly prescribed cancer therapies, long before clinically used parameters become abnormal. Such early detection, not available currently, is crucial for implementation of early therapies. We also hypothesize that in end-stage CTiCT, mitochondrial dysfunction has passed a no-return point, and the failing heart will only be rescued by a strategy to replenish the myocardium with fresh healthy mitochondria. This will be achieved with a radical new therapeutic option: in-vivo mitochondrial transplantation. The MATRIX project has broad translational potential, including a new therapeutic approach to a clinically relevant condition, the development of technology for early diagnosis, and advances in knowledge of basic disease mechanisms.
Max ERC Funding
1 999 375 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym METACELL
Project Artificial metabolic cells for biomanufacturing of bio-based chiral fine chemicals
Researcher (PI) Fernando Lopez Gallego
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Country Spain
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary One of the major challenges of sustainable chemistry is expanding the palette of bio-based chemicals that can replace, or at least ameliorate, the exploitation of fuel-based chemicals. Cell-free metabolic engineering using soluble enzymes is an emerging and versatile approach that seeks to increase the selectivity and productivity of chemical biomanufacturing processes. However, soluble and isolated enzymes present major issues in terms of efficiency, stability and re-usability that hamper industrial applications.
To solve these problems, enzymes can be rationally immobilized on smart materials resulting in robust, efficient and self-sufficient heterogeneous biocatalysts, but immobilization is still restricted to simple enzyme cascades. METACELL mission is developing self-sufficient artificial metabolic cells (AMCs) by immobilizing complex metabolic networks on hierarchical porous materials. To this aim, the solid surfaces must play an active role in the chemical process rather than just being a mere immobilization support.
This integrative proposal will exploit protein engineering, surface chemistry, bio-organic chemistry and protein immobilization tools for the successful development of 1) a cell-free artificial metabolism, 2) innovative engineering tools to modify both enzyme and material surfaces and 3) continuous synthesis of industrially relevant fine chemicals catalyzed by AMCs packed into flow reactors. The resulting technology of METACELL will serve as a prototyping platform to test artificial biosynthetic pathways with application in combinatorial chemistry (e.g drugs discovery). METACELL may also offer long-term solutions for the on-demand production of drugs at the point-of-care.
In addition to the technological outputs, METACELL will also provide essential information to understand how spatial organization of multi-enzyme systems affect the performance of in vitro biosynthetic pathways confined into artificial chassis (solid materials).
Summary
One of the major challenges of sustainable chemistry is expanding the palette of bio-based chemicals that can replace, or at least ameliorate, the exploitation of fuel-based chemicals. Cell-free metabolic engineering using soluble enzymes is an emerging and versatile approach that seeks to increase the selectivity and productivity of chemical biomanufacturing processes. However, soluble and isolated enzymes present major issues in terms of efficiency, stability and re-usability that hamper industrial applications.
To solve these problems, enzymes can be rationally immobilized on smart materials resulting in robust, efficient and self-sufficient heterogeneous biocatalysts, but immobilization is still restricted to simple enzyme cascades. METACELL mission is developing self-sufficient artificial metabolic cells (AMCs) by immobilizing complex metabolic networks on hierarchical porous materials. To this aim, the solid surfaces must play an active role in the chemical process rather than just being a mere immobilization support.
This integrative proposal will exploit protein engineering, surface chemistry, bio-organic chemistry and protein immobilization tools for the successful development of 1) a cell-free artificial metabolism, 2) innovative engineering tools to modify both enzyme and material surfaces and 3) continuous synthesis of industrially relevant fine chemicals catalyzed by AMCs packed into flow reactors. The resulting technology of METACELL will serve as a prototyping platform to test artificial biosynthetic pathways with application in combinatorial chemistry (e.g drugs discovery). METACELL may also offer long-term solutions for the on-demand production of drugs at the point-of-care.
In addition to the technological outputs, METACELL will also provide essential information to understand how spatial organization of multi-enzyme systems affect the performance of in vitro biosynthetic pathways confined into artificial chassis (solid materials).
Max ERC Funding
1 995 894 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym MULTIPALEOIBERIA
Project Population dynamics and cultural adaptations of the last Neandertals and first Modern humans in inland Iberia: a multi-proxy investigation
Researcher (PI) Manuel ALCARAZ-CASTAnO
Host Institution (HI) UNIVERSIDAD DE ALCALA
Country Spain
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Summary
The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Max ERC Funding
1 387 515 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym NextGen IO
Project Exploiting the hypoxia response in T cells for Next-Generation Immuno-Oncology
Researcher (PI) Francisco de Asis PALAZON GARCIA
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Country Spain
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary NextGen_IO has a core focus on immuno-oncology, specifically on target discovery and drug development, to exploit several opportunities that the hypoxia pathway in T cells offers for the treatment of cancer. It is well recognised that the clinical response of immunotherapies depends on the ability of T-cells to mount an effective effector response, persist in treated patients and avoid exhaustion and toxicities. Several approaches to immunotherapy have shown promise in clinical trials, especially the use of immune checkpoint inhibitors and, more recently, autologous adoptive T-cell therapies. However, current state-of-the-art immunotherapies are only effective in a small fraction of patients, offering a medical need to be addressed in several cancer types. Importantly, the tumor microenvironment has specific features that impact the immune response, including decreased oxygenation, aberrant vascularization and altered nutrient availability; all these influence the success of immunotherapies. During the last 10 years, my research has been focused on elucidating the role of the oxygen sensing machinery in T cell function, and the link of hypoxia-driven metabolism and epigenetic modifications with T cell differentiation into effector and memory T cells within the context of cancer immunotherapy. The current proposal aims to exploit these previous findings with a multi-disciplinary strategy, to deliver several early-stage drug discovery outputs.
The main objectives are:
1. Development of a novel small molecule inhibitor to modulate the hypoxic response in T cells.
2. Therapeutic target discovery in T cells, focused on hypoxia-driven epigenetic modifications.
3. Development of hypoxia-inducible molecular switches for adoptive T cell therapy.
Successful completion of the project will allow me to further innovate and consolidate my position as a leader in this field, harness this pathway for therapeutic potential and explore potential combinatorial approaches.
Summary
NextGen_IO has a core focus on immuno-oncology, specifically on target discovery and drug development, to exploit several opportunities that the hypoxia pathway in T cells offers for the treatment of cancer. It is well recognised that the clinical response of immunotherapies depends on the ability of T-cells to mount an effective effector response, persist in treated patients and avoid exhaustion and toxicities. Several approaches to immunotherapy have shown promise in clinical trials, especially the use of immune checkpoint inhibitors and, more recently, autologous adoptive T-cell therapies. However, current state-of-the-art immunotherapies are only effective in a small fraction of patients, offering a medical need to be addressed in several cancer types. Importantly, the tumor microenvironment has specific features that impact the immune response, including decreased oxygenation, aberrant vascularization and altered nutrient availability; all these influence the success of immunotherapies. During the last 10 years, my research has been focused on elucidating the role of the oxygen sensing machinery in T cell function, and the link of hypoxia-driven metabolism and epigenetic modifications with T cell differentiation into effector and memory T cells within the context of cancer immunotherapy. The current proposal aims to exploit these previous findings with a multi-disciplinary strategy, to deliver several early-stage drug discovery outputs.
The main objectives are:
1. Development of a novel small molecule inhibitor to modulate the hypoxic response in T cells.
2. Therapeutic target discovery in T cells, focused on hypoxia-driven epigenetic modifications.
3. Development of hypoxia-inducible molecular switches for adoptive T cell therapy.
Successful completion of the project will allow me to further innovate and consolidate my position as a leader in this field, harness this pathway for therapeutic potential and explore potential combinatorial approaches.
Max ERC Funding
1 993 575 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym PLANTGROWTH
Project Exploiting genome replication to design improved plant growth strategies
Researcher (PI) Crisanto GUTIERREZ
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS9, ERC-2018-ADG
Summary This project will identify the principles governing genome replication in relation to the chromatin landscape and how they impact on plant organ growth. The results will provide the basis to design novel strategies to improve plant growth performance.
The large plant genomes, as in all eukaryotes, must be faithfully duplicated every cell cycle, a process regulated at the level of DNA replication origins (ORIs). Our understanding of how ORIs are determined is still very limited. Most of our knowledge comes from cultured cells, precluding the identification of regulatory layers operating at the organism level. Importantly, genome replication can offer unexplored possibilities to modulate plant architecture and growth and, consequently, plant performance.
Results generated so far unable us to address a fundamental question: what are the regulatory mechanisms of DNA and genome replication and how they can be exploited to design improved plant growth strategies. This innovative perspective will reveal how genome replication is regulated by DNA sequence context, replication factors and chromatin landscape. Integration of molecular, cellular, genomic and genetic approaches in a whole organism will serve to evaluate the phenotypic effects of modulating genome replication on organ growth. We will also learn how DNA replication control is exerted during endoreplication and in coordination with transcriptional programs, both crucial for plant organogenesis, growth and response to environmental stresses.
This program goes beyond incremental research, is timely, innovative, ambitious but realistic, and high risk/high gain, combining different approaches to address a fundamental process. Given the conservation of proteins and pathways, and the availability of well-annotated genomic information for many plant species, PLANTGROWTH will pave the way to translate the technological and conceptual know-how derived from this program to crop species to improve yield.
Summary
This project will identify the principles governing genome replication in relation to the chromatin landscape and how they impact on plant organ growth. The results will provide the basis to design novel strategies to improve plant growth performance.
The large plant genomes, as in all eukaryotes, must be faithfully duplicated every cell cycle, a process regulated at the level of DNA replication origins (ORIs). Our understanding of how ORIs are determined is still very limited. Most of our knowledge comes from cultured cells, precluding the identification of regulatory layers operating at the organism level. Importantly, genome replication can offer unexplored possibilities to modulate plant architecture and growth and, consequently, plant performance.
Results generated so far unable us to address a fundamental question: what are the regulatory mechanisms of DNA and genome replication and how they can be exploited to design improved plant growth strategies. This innovative perspective will reveal how genome replication is regulated by DNA sequence context, replication factors and chromatin landscape. Integration of molecular, cellular, genomic and genetic approaches in a whole organism will serve to evaluate the phenotypic effects of modulating genome replication on organ growth. We will also learn how DNA replication control is exerted during endoreplication and in coordination with transcriptional programs, both crucial for plant organogenesis, growth and response to environmental stresses.
This program goes beyond incremental research, is timely, innovative, ambitious but realistic, and high risk/high gain, combining different approaches to address a fundamental process. Given the conservation of proteins and pathways, and the availability of well-annotated genomic information for many plant species, PLANTGROWTH will pave the way to translate the technological and conceptual know-how derived from this program to crop species to improve yield.
Max ERC Funding
2 497 800 €
Duration
Start date: 2019-06-01, End date: 2024-05-31