Project acronym 2D-PnictoChem
Project Chemistry and Interface Control of Novel 2D-Pnictogen Nanomaterials
Researcher (PI) Gonzalo ABELLAN SAEZ
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary 2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Summary
2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Max ERC Funding
1 499 419 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CEAD
Project Contextualizing Evidence for Action on Diabetes in low-resource Settings: A mixed-methods case study in Quito and Esmeraldas, Ecuador.
Researcher (PI) Lucy Anne Parker
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Summary
The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Max ERC Funding
1 475 334 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DYMOLAMO
Project Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation
Researcher (PI) Joan LLULL CABRER
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Country Spain
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary In today’s globalized world, labor mobility is at the core of the political debate and a centerpiece for economic policy. The design of migration policies, such as selective, skill-biased, immigration policies, policies to encourage the integration of immigrants, or ones that facilitate geographical mobility to increase labor market opportunities of disadvantaged workers, requires a good understanding of a more fundamental issue: understanding the role of internal migration and immigration in shaping the career paths and human capital accumulation of workers. This project aims at providing a coherent analysis that allows us to understand the interactions between labor mobility and human capital accumulation, and their implications for economic policy design.
This project focuses on three main issues: labor mobility, labor market effects of immigration, and the interaction between the two. Our questions are: (a) What are the role of temporary and permanent contracts in shaping career paths and geographic mobility of workers? (b) Does the forgone human capital accumulation during a recession produce a lost generation? Is this alleviated by geographical mobility? (c) What is the role of geographical and occupational mobility in spreading or containing the effects of technological progress on wage inequality? (d) To what extent selective immigration policies maximize native workers’ prospects and wellbeing? (e) How can we increase degree of assimilation of immigrants?
To address these questions, we will develop dynamic equilibrium models that explicitly characterize human capital accumulation decisions of workers and how these decisions interact with migration. Our proposed models will introduce rich labor market structures and a variety of economic shocks. They will require the implementation of novel estimation methods, which we will also develop. The estimated models will be used to evaluate and design key economic policies for the labor market.
Summary
In today’s globalized world, labor mobility is at the core of the political debate and a centerpiece for economic policy. The design of migration policies, such as selective, skill-biased, immigration policies, policies to encourage the integration of immigrants, or ones that facilitate geographical mobility to increase labor market opportunities of disadvantaged workers, requires a good understanding of a more fundamental issue: understanding the role of internal migration and immigration in shaping the career paths and human capital accumulation of workers. This project aims at providing a coherent analysis that allows us to understand the interactions between labor mobility and human capital accumulation, and their implications for economic policy design.
This project focuses on three main issues: labor mobility, labor market effects of immigration, and the interaction between the two. Our questions are: (a) What are the role of temporary and permanent contracts in shaping career paths and geographic mobility of workers? (b) Does the forgone human capital accumulation during a recession produce a lost generation? Is this alleviated by geographical mobility? (c) What is the role of geographical and occupational mobility in spreading or containing the effects of technological progress on wage inequality? (d) To what extent selective immigration policies maximize native workers’ prospects and wellbeing? (e) How can we increase degree of assimilation of immigrants?
To address these questions, we will develop dynamic equilibrium models that explicitly characterize human capital accumulation decisions of workers and how these decisions interact with migration. Our proposed models will introduce rich labor market structures and a variety of economic shocks. They will require the implementation of novel estimation methods, which we will also develop. The estimated models will be used to evaluate and design key economic policies for the labor market.
Max ERC Funding
1 400 250 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym EMAGIN2D
Project Electrical control of magnetism in multiferroic 2D materials
Researcher (PI) Efren NAVARRO-MORATALLA
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s provision for the realization of imagination-limited artificial layered structures. At the same time, this awaited breakthrough has brought in new conundrums that demand investigation. This project is driven by the exploration of the limits of van der Waals 2D magnets from both a fundamental physics and a materials science and devices point of view. Firstly, it addresses fundamental key questions regarding spin order at the true 2D limit, which remain a mystery to the date. Here, the great variety of magnetic anisotropies exhibited by the transition metal halides will shed new light to the subtle equilibrium of interactions in few-layer magnets. Secondly, the project will invoke the control of the magnetic ground states and spin textures in true 2D magnets via electrical manipulation. Electric fields will assist in tuning the magnetic coupling and critical behaviour and the spatial manipulation of spin topologies. Anticipated breakthroughs will be the enhancement of the critical temperature in semiconducting single layer magnets towards room temperature 2D magnetism and the realization of single-layer multiferroic 2D materials. Thirdly, the field effect electrical control of magnetism in designer van der Waals and lateral heterostructures will allow for an enhanced magneto-electric coupling, yielding functional devices for effective charge-to-spin transduction that hold promise in spintronics. The proposal will achieve success by an integral approach to research, through the combination of the study of solid-state growth techniques together with the implementation of state-of-the-art deterministic manipulation of 2D materials in inert conditions and the use high resolution magnetism probes to test hybrid magnetic-optoelectronic devices.
Summary
The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s provision for the realization of imagination-limited artificial layered structures. At the same time, this awaited breakthrough has brought in new conundrums that demand investigation. This project is driven by the exploration of the limits of van der Waals 2D magnets from both a fundamental physics and a materials science and devices point of view. Firstly, it addresses fundamental key questions regarding spin order at the true 2D limit, which remain a mystery to the date. Here, the great variety of magnetic anisotropies exhibited by the transition metal halides will shed new light to the subtle equilibrium of interactions in few-layer magnets. Secondly, the project will invoke the control of the magnetic ground states and spin textures in true 2D magnets via electrical manipulation. Electric fields will assist in tuning the magnetic coupling and critical behaviour and the spatial manipulation of spin topologies. Anticipated breakthroughs will be the enhancement of the critical temperature in semiconducting single layer magnets towards room temperature 2D magnetism and the realization of single-layer multiferroic 2D materials. Thirdly, the field effect electrical control of magnetism in designer van der Waals and lateral heterostructures will allow for an enhanced magneto-electric coupling, yielding functional devices for effective charge-to-spin transduction that hold promise in spintronics. The proposal will achieve success by an integral approach to research, through the combination of the study of solid-state growth techniques together with the implementation of state-of-the-art deterministic manipulation of 2D materials in inert conditions and the use high resolution magnetism probes to test hybrid magnetic-optoelectronic devices.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym EXTREME
Project The Rise and Fall of Populism and Extremism
Researcher (PI) Maria PETROVA
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary In the recent years in advanced democracies there has been a wave of electoral successes of populist politicians supporting extreme messages. Is populism caused by negative economic shocks? If so, what are the mechanisms? What explains heterogeneity in responses to such shocks? In this project, I will test empirically if personal experiences, information environment, and their interaction with aggregate economic shocks shape people’s political decisions. The project consists of three parts.
First, I will study how personal employment histories, potentially affected by globalization and technological shocks, individual predispositions, and information environment influenced voting for Trump. I will use a unique database of more than 40 million resumes for the period 2010-2016, the largest available repository of resumes of job-seekers in the US, which was not previously used in academic research, and match it with zipcode-level economic and voting variables.
Second, I will study how negative social experiences during the formative years affect subsequent labor market outcomes, antisocial behavior, and the support of populist agenda. I will examine how corporal punishment in schools in UK affected subsequent educational attainment, employment, antisocial behavior, and voting for UKIP and Brexit. I will digitize archival records on regulations and practice of corporal punishment in different educational authorities in the UK during 1970-80s, combining it with contemporary outcomes.
Third, I will examine what makes people actively resist extremist regimes even when it is associated with high personal costs. I will study a historical example of resistance to Nazi regime in Germany during the WWII, which provides unique methodological opportunity to study determinants of resistance to extremism in a high stake environment. I will use a self-collected dataset on treason cases to measure resistance, combining it with data on bombing and exposure to foreign propaganda.
Summary
In the recent years in advanced democracies there has been a wave of electoral successes of populist politicians supporting extreme messages. Is populism caused by negative economic shocks? If so, what are the mechanisms? What explains heterogeneity in responses to such shocks? In this project, I will test empirically if personal experiences, information environment, and their interaction with aggregate economic shocks shape people’s political decisions. The project consists of three parts.
First, I will study how personal employment histories, potentially affected by globalization and technological shocks, individual predispositions, and information environment influenced voting for Trump. I will use a unique database of more than 40 million resumes for the period 2010-2016, the largest available repository of resumes of job-seekers in the US, which was not previously used in academic research, and match it with zipcode-level economic and voting variables.
Second, I will study how negative social experiences during the formative years affect subsequent labor market outcomes, antisocial behavior, and the support of populist agenda. I will examine how corporal punishment in schools in UK affected subsequent educational attainment, employment, antisocial behavior, and voting for UKIP and Brexit. I will digitize archival records on regulations and practice of corporal punishment in different educational authorities in the UK during 1970-80s, combining it with contemporary outcomes.
Third, I will examine what makes people actively resist extremist regimes even when it is associated with high personal costs. I will study a historical example of resistance to Nazi regime in Germany during the WWII, which provides unique methodological opportunity to study determinants of resistance to extremism in a high stake environment. I will use a self-collected dataset on treason cases to measure resistance, combining it with data on bombing and exposure to foreign propaganda.
Max ERC Funding
1 467 736 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym MULTIPALEOIBERIA
Project Population dynamics and cultural adaptations of the last Neandertals and first Modern humans in inland Iberia: a multi-proxy investigation
Researcher (PI) Manuel ALCARAZ-CASTAnO
Host Institution (HI) UNIVERSIDAD DE ALCALA
Country Spain
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Summary
The relations between cultural developments and environmental change among hunter-gatherers are crucial for studying population dynamics during the last glaciation (110,000–11,700 years ago). However, proposing solid interpretations on how climate and environment variability affected the social and techno-economic organisation of hominins, requires robust geoarchaeological, chronological, and palaeoecological evidence. In the Iberian Peninsula, a key area for this period due to its geographic position and ecological variability, models on these topics are biased by the poor quality of available evidence for its interior lands. The Iberian interior has been traditionally depicted as a marginal and few populated region due to its harsh ecological conditions compared to the coastal areas. Based on preliminary data suggesting that this picture could be wrong, I hypothesize (1) that the human settlement of interior Iberia during this period was more stable than previously thought and (2) that his has relevant implications at the European scale for problems such as the replacement of Neandertals by modern humans, the first modern human peopling of Europe, and the patterns of land use and mobility during the coldest stages of the last glacial. To test these hypotheses, this project will investigate population dynamics and human-environment interactions of the last Neandertals and first modern humans in interior Iberia based on completely unprecedented evidence gathered by means of a macro-regional and interdisciplinary research project. This involves the participation of a wide team of scholars coordinated by the PI, and a network of methods including field surveys, geoarchaeological excavations and chronometric, paleoecological, zooarchaeological, techno-economic and symbolic studies. The results will significantly change our views on key biocultural and ecological processes of the European prehistory, and the way human societies have dealt with challenging environments.
Max ERC Funding
1 387 515 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym OPTNETSPACE
Project Optimal Transport Networks in Spatial Equilibrium
Researcher (PI) Edouard SCHAAL
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Every year, the world economy invests a large amount of resources to improve or develop transport infrastructure. How should these investments be allocated to maximize social welfare? In this proposal, I propose to develop and apply new methods to study optimal transport networks in general-equilibrium models of international trade, urban economics and economic geography. The methodology will build on recent work (Fajgelbaum and Schaal, 2017), in which my coauthor and I studied the network design problem in a general neoclassical trade framework.
In the first project, I develop a new framework to analyze optimal infrastructure investment in an urban setting. The model features people commuting between residential areas and business districts as well as a choice over the mode of transportation. We plan to evaluate the framework to historical data about specific cities.
In the second project, I propose and implement an new algorithm to compute optimal transport networks in the presence of increasing returns to transport, a likely prominent feature of real-world networks. The algorithm applies a branch-and-bound method in a series of geometric programming relaxations of the problem.
In the third project, I study the dynamic evolution of actual transport networks using satellite data from the US, India and Mexico. In the spirit of Hsieh and Klenow (2007), I use the model to measure distortions in the placement of roads between rich and poor countries.
In the fourth project, I study the inefficiencies and welfare losses associated with political economy frictions among governments and planning agencies. I use the model to identify inefficiencies and relate them to measures of institutions and political outcomes.
In the final project, I propose a new explanation behind the Zipf’s law distribution of city sizes. I show that Zipf’s law may result from particular topological properties of optimal transport networks that allocate resources efficiently in space.
Summary
Every year, the world economy invests a large amount of resources to improve or develop transport infrastructure. How should these investments be allocated to maximize social welfare? In this proposal, I propose to develop and apply new methods to study optimal transport networks in general-equilibrium models of international trade, urban economics and economic geography. The methodology will build on recent work (Fajgelbaum and Schaal, 2017), in which my coauthor and I studied the network design problem in a general neoclassical trade framework.
In the first project, I develop a new framework to analyze optimal infrastructure investment in an urban setting. The model features people commuting between residential areas and business districts as well as a choice over the mode of transportation. We plan to evaluate the framework to historical data about specific cities.
In the second project, I propose and implement an new algorithm to compute optimal transport networks in the presence of increasing returns to transport, a likely prominent feature of real-world networks. The algorithm applies a branch-and-bound method in a series of geometric programming relaxations of the problem.
In the third project, I study the dynamic evolution of actual transport networks using satellite data from the US, India and Mexico. In the spirit of Hsieh and Klenow (2007), I use the model to measure distortions in the placement of roads between rich and poor countries.
In the fourth project, I study the inefficiencies and welfare losses associated with political economy frictions among governments and planning agencies. I use the model to identify inefficiencies and relate them to measures of institutions and political outcomes.
In the final project, I propose a new explanation behind the Zipf’s law distribution of city sizes. I show that Zipf’s law may result from particular topological properties of optimal transport networks that allocate resources efficiently in space.
Max ERC Funding
887 500 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym RIVERS
Project Water/human rights beyond the human? Indigenous water ontologies, plurilegal encounters and interlegal translation
Researcher (PI) Lieselotte VIAENE
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Summary
RIVERS’s main challenge is to produce ground-breaking knowledge, from an empirical, interdisciplinary and dialoguing perspective, about the contentions and challenges intrinsic to reconceptualising human rights with different ways of understanding and relating to water. Worldwide, indigenous peoples are mobilising against the neoliberalisation of nature, demonstrating radically different ways of knowing, being and living. At the same time, in 2010 the UN acknowledged water as a human right, while in 2017 New Zealand, India and Colombia established ground-breaking legal precedents by granting rivers human rights. RIVERS’s overarching research question is: To what extent can international human rights law come to grips with plurilegal water realities? This project engages with one of the most pressing questions of this century: the relationship between humans and nature. RIVERS tackles two intertwined core objectives: 1) analysing different ways of knowing and relating to water and life among indigenous peoples and their understanding of its (potential) violation by extractive projects; 2) discussing the contributions, challenges and pitfalls of interlegal translation of differing water natures in plurilegal encounters at domestic and international levels. RIVERS will develop a multi-sited analysis and empirical case-studies in three contexts: Colombia, Nepal and the UN human rights protection system. Through the lens of legal pluralism, this will foreground competing political and legal water realities that interrogate dominant understandings of the modern world. RIVERS will address two interrelated research challenges: 1) indigenous visions/practices: beyond water as a natural resource and human right; 2) the UN human rights system: towards counter-hegemonic water knowledge production. This project will pioneer new ways of thinking about water beyond the modern divides of nature/culture, providing clues about future paths towards reconceptualising human rights.
Max ERC Funding
1 498 446 €
Duration
Start date: 2019-05-01, End date: 2024-04-30