Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym A-BINGOS
Project Accreting binary populations in Nearby Galaxies: Observations and Simulations
Researcher (PI) Andreas Zezas
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Country Greece
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Summary
"High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Max ERC Funding
1 242 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ALERT
Project ALERT - The Apertif-LOFAR Exploration of the Radio Transient Sky
Researcher (PI) Albert Van Leeuwen
Host Institution (HI) STICHTING ASTRON, NETHERLANDS INSTITUTE FOR RADIO ASTRONOMY
Country Netherlands
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "In our largely unchanging radio Universe, a highly dynamic component was recently discovered: flashes of bright radio emission that last only milliseconds but appear all over the sky. Some of these radio bursts can be traced to intermittently pulsating neutron stars. Other bursts however, apparently originate far outside our Galaxy. Due to great observational challenges, the evolution of the neutron stars is not understood, while more importantly, the nature of the extragalactic bursts remains an outright mystery.
My overall aim is to understand the physics that drives both kinds of brief and luminous bursts.
My primary goal is to identify the highly compact astrophysical explosions powering the extragalactic bursts. My previous surveys are the state of the art in fast-transient detection; I will now increase by a factor of 10 this exploration volume. In real-time I will provide arcsec positions, 10,000-fold more accurate than currently possible, to localize such extragalactic bursts for the first time and understand their origin.
My secondary goal is to unravel the unexplained evolution of intermittently pulsating neutron stars (building on e.g., my recent papers in Science, 2013), by doubling their number and modeling their population.
To achieve these goals, I will carry out a highly innovative survey: the Apertif-LOFAR Exploration of the Radio Transient Sky. ALERT is over an order of magnitude more sensitive than all current state-of-the art fast-transient surveys.
Through its novel, extremely wide field-of-view, Westerbork/Apertif will detect many tens of extragalactic bursts. Through real-time triggers to LOFAR I will next provide the precise localisation that is essential for radio, optical and high-energy follow-up to, for the first time, shed light on the physics and objects driving these bursts – evaporating primordial black holes; explosions in host galaxies; or, the unknown?"
Summary
"In our largely unchanging radio Universe, a highly dynamic component was recently discovered: flashes of bright radio emission that last only milliseconds but appear all over the sky. Some of these radio bursts can be traced to intermittently pulsating neutron stars. Other bursts however, apparently originate far outside our Galaxy. Due to great observational challenges, the evolution of the neutron stars is not understood, while more importantly, the nature of the extragalactic bursts remains an outright mystery.
My overall aim is to understand the physics that drives both kinds of brief and luminous bursts.
My primary goal is to identify the highly compact astrophysical explosions powering the extragalactic bursts. My previous surveys are the state of the art in fast-transient detection; I will now increase by a factor of 10 this exploration volume. In real-time I will provide arcsec positions, 10,000-fold more accurate than currently possible, to localize such extragalactic bursts for the first time and understand their origin.
My secondary goal is to unravel the unexplained evolution of intermittently pulsating neutron stars (building on e.g., my recent papers in Science, 2013), by doubling their number and modeling their population.
To achieve these goals, I will carry out a highly innovative survey: the Apertif-LOFAR Exploration of the Radio Transient Sky. ALERT is over an order of magnitude more sensitive than all current state-of-the art fast-transient surveys.
Through its novel, extremely wide field-of-view, Westerbork/Apertif will detect many tens of extragalactic bursts. Through real-time triggers to LOFAR I will next provide the precise localisation that is essential for radio, optical and high-energy follow-up to, for the first time, shed light on the physics and objects driving these bursts – evaporating primordial black holes; explosions in host galaxies; or, the unknown?"
Max ERC Funding
1 999 823 €
Duration
Start date: 2014-12-01, End date: 2020-11-30
Project acronym APOSITE
Project Apoptotic foci: composition, structure and dynamics
Researcher (PI) Ana GARCIA SAEZ
Host Institution (HI) UNIVERSITAET ZU KOELN
Country Germany
Call Details Consolidator Grant (CoG), LS3, ERC-2018-COG
Summary Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Summary
Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ARITHMUS
Project Peopling Europe: How data make a people
Researcher (PI) Evelyn Sharon Ruppert
Host Institution (HI) GOLDSMITHS' COLLEGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH3, ERC-2013-CoG
Summary Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Summary
Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Max ERC Funding
1 833 649 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ART
Project Aberrant RNA degradation in T-cell leukemia
Researcher (PI) Jan Cools
Host Institution (HI) VIB VZW
Country Belgium
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Summary
"The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Max ERC Funding
1 998 300 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ASEA
Project The aftermath of slavery in East Africa
Researcher (PI) Felicitas Maria BECKER
Host Institution (HI) UNIVERSITEIT GENT
Country Belgium
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary Legacies of slavery tend to affect societies deeply, but in inland East Africa have remained little explored. This project aims [1] to establish what happened to the hundreds of thousands of slaves present in mainland East Africa in ca. 1900 and to their descendants over the twentieth century, [2] to explain why the aftermath of slavery is so little discussed in the written sources and historiography of the region, and [3] to trace the social and political legacies of slavery up to the present. It will combine historical and anthropological methods, and, besides post-slavery, addresses questions pertaining to public history, social mobility, marginality and inequality, gender, and understandings of freedom. It pursues them through a series of place-specific case-studies tracing different courses and outcomes within the region, and through comparative work, both between the case studies and with studies on the aftermath of slavery in West Africa, the Indian Ocean and the Americas.
The project is ground-breaking through its long-term time frame, its wide-ranging combination of methods, and in questioning established assumptions, e.g. about the meaning of ‘freedom’ for ex-slaves. It is high-risk in the sense that the field researchers leading the case studies will need good knowledge of Swahili, good social contacts and the flexibility to identify and follow emerging leads wherever they take them. It is feasible because the proposed research program and conceptual frameworks can be adapted as the work develops, and given the obscurity of the regions, groups and questions involved, the resulting gains to knowledge will be major. It is high-gain because it will fill a gaping hole in current knowledge, and establish how people in East Africa coped with the toxic legacy of slavery, which often presents intractable problems, apparently with little disruption. The resulting comparisons will contribute to a better understanding of tensions in other post-slavery societies.
Summary
Legacies of slavery tend to affect societies deeply, but in inland East Africa have remained little explored. This project aims [1] to establish what happened to the hundreds of thousands of slaves present in mainland East Africa in ca. 1900 and to their descendants over the twentieth century, [2] to explain why the aftermath of slavery is so little discussed in the written sources and historiography of the region, and [3] to trace the social and political legacies of slavery up to the present. It will combine historical and anthropological methods, and, besides post-slavery, addresses questions pertaining to public history, social mobility, marginality and inequality, gender, and understandings of freedom. It pursues them through a series of place-specific case-studies tracing different courses and outcomes within the region, and through comparative work, both between the case studies and with studies on the aftermath of slavery in West Africa, the Indian Ocean and the Americas.
The project is ground-breaking through its long-term time frame, its wide-ranging combination of methods, and in questioning established assumptions, e.g. about the meaning of ‘freedom’ for ex-slaves. It is high-risk in the sense that the field researchers leading the case studies will need good knowledge of Swahili, good social contacts and the flexibility to identify and follow emerging leads wherever they take them. It is feasible because the proposed research program and conceptual frameworks can be adapted as the work develops, and given the obscurity of the regions, groups and questions involved, the resulting gains to knowledge will be major. It is high-gain because it will fill a gaping hole in current knowledge, and establish how people in East Africa coped with the toxic legacy of slavery, which often presents intractable problems, apparently with little disruption. The resulting comparisons will contribute to a better understanding of tensions in other post-slavery societies.
Max ERC Funding
1 921 250 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym ASTROFLOW
Project The influence of stellar outflows on exoplanetary mass loss
Researcher (PI) Aline VIDOTTO
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Summary
ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Max ERC Funding
1 999 956 €
Duration
Start date: 2019-09-01, End date: 2024-08-31