Project acronym BEBOP
Project Binaries Escorted By Orbiting Planets
Researcher (PI) Amaury TRIAUD
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Summary
Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Max ERC Funding
1 186 313 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CartographY
Project Mapping Stellar Helium
Researcher (PI) Guy DAVIES
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Summary
In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Max ERC Funding
1 496 203 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym CMBSPEC
Project Next Steps in Cosmology with CMB Spectral Distortions
Researcher (PI) Jens CHLUBA
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary The average spectrum of the cosmic microwave background (CMB) has long been known to be extremely close to a perfect blackbody. Yet, several processes, standard and non-standard, exist that may cause deviations from a blackbody spectrum, commonly referred to as CMB spectral distortions. Classical distortion shapes are known as Compton-y and chemical potential (µ-type) distortions; however, recently it has been shown that more general distortions can be created at redshifts 10^4 < z < 3×10^5. This makes spectral distortions a unique and powerful probe of different early-universe processes. The immense potential of CMB spectral distortion measurements and their synergies with upcoming CMB anisotropy studies (Litebird, COrE+, Stage-IV CMB) has identified them as an important future target, with several innovative experimental concepts (e.g., PIXIE, APSERa) being actively discussed by the cosmology community.
This proposal has one main goal: to transform the emerging field of CMB spectral distortions into a mature scientific discipline. The team will significantly expand and strengthen the spectral distortion science case with particular emphasis on novel time-dependent information from the recombination era (10^3 < z < 10^4) and various photon injection processes. By combining all available information, we will investigate what spectral distortions could teach us about early-universe physics and the cosmological ionization history. Novel foreground parameterizations and experimental setups will be studied and simulation pipelines will be developed. Our work could deliver new tests for inflation, reionization and particle physics as well as extend our ability to distinguish sources of different distortion signals in the presence of foregrounds. We will identify novel spectral distortion science goals that will drive the experimental designs of future CMB spectroscopy experiments, pioneering and facilitating spectral distortion activities in Europe and worldwide.
Summary
The average spectrum of the cosmic microwave background (CMB) has long been known to be extremely close to a perfect blackbody. Yet, several processes, standard and non-standard, exist that may cause deviations from a blackbody spectrum, commonly referred to as CMB spectral distortions. Classical distortion shapes are known as Compton-y and chemical potential (µ-type) distortions; however, recently it has been shown that more general distortions can be created at redshifts 10^4 < z < 3×10^5. This makes spectral distortions a unique and powerful probe of different early-universe processes. The immense potential of CMB spectral distortion measurements and their synergies with upcoming CMB anisotropy studies (Litebird, COrE+, Stage-IV CMB) has identified them as an important future target, with several innovative experimental concepts (e.g., PIXIE, APSERa) being actively discussed by the cosmology community.
This proposal has one main goal: to transform the emerging field of CMB spectral distortions into a mature scientific discipline. The team will significantly expand and strengthen the spectral distortion science case with particular emphasis on novel time-dependent information from the recombination era (10^3 < z < 10^4) and various photon injection processes. By combining all available information, we will investigate what spectral distortions could teach us about early-universe physics and the cosmological ionization history. Novel foreground parameterizations and experimental setups will be studied and simulation pipelines will be developed. Our work could deliver new tests for inflation, reionization and particle physics as well as extend our ability to distinguish sources of different distortion signals in the presence of foregrounds. We will identify novel spectral distortion science goals that will drive the experimental designs of future CMB spectroscopy experiments, pioneering and facilitating spectral distortion activities in Europe and worldwide.
Max ERC Funding
1 965 171 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym DISKtoHALO
Project From the accretion disk to the cluster halo: the multi-scale physics of black hole feedback
Researcher (PI) Christopher REYNOLDS
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Summary
It is firmly established that supermassive black holes (SMBHs) have a profound influence on the evolution of galaxies and galaxy groups/clusters. Yet, almost 20 years after this realization, fundamental questions remain. What determines the efficiency with which an active galactic nucleus (AGN) couples to its surroundings? Why does AGN feedback appear to be ineffective in low-mass galaxies? In maintenance-mode feedback, how does the AGN regulate to closely balance cooling? How does the nature of AGN feedback change as we consider higher redshifts and push back to the epoch of the first galaxies? AGN feedback is a truly multi-scale phenomenon. Observations show that AGN have an energetic impact on galactic-, group-, and cluster-halo scales. Yet the efficiency with which an accreting SMBH releases energy, and the partitioning of that energy into radiation, winds, and relativistic jets, is dictated by complex processes in the accretion disk on AU scales, 10^10 times smaller than the halo. Furthermore, especially in massive systems where feedback proceeds via the heating of a hot circumgalactic or intracluster medium (CGM/ICM), the relevant microphysics of the hot baryons is unclear, requiring an understanding of plasma instabilities on 10^-9pc scales. We propose a set of projects that explore the multiscale physics of AGN feedback. Magnetohydrodynamic models of accretion disks will be constructed to study the AGN radiation/winds/jets and calibrate observable proxies of SMBH mass and accretion rate. We will use the machinery of plasma physics to characterize the CGM/ICM microphysics relevant to the thermalization of AGN-injected energy. Finally, we will produce new galaxy-, group- and cluster-scale models incorporating the new microphysical prescriptions and AGN models. Our new theoretical understanding of AGN feedback as a function of halo mass, environment, and cosmic time is essential for interpreting the torrent of data from current and future observatories
Max ERC Funding
2 489 918 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym EXOCONDENSE
Project Climate Dynamics of Exoplanets with Condensible Atmospheres
Researcher (PI) Raymond Thomas PIERREHUMBERT
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2016-ADG
Summary Condensible substances, which undergo a phase change from gaseous to liquid or solid condensed form, have a profound impact on planetary atmospheres, and are central to the determination of most key aspects of a planet's climate. The three phases of water operating in Earth's present climate provide the archetype for condensible processes in climate dynamics, but the dawning age of exoplanet discovery and characterization requires that the understanding of phase change effects be expanded far beyond the situations familiar from the study of Earth's climate, or indeed of the climate of any Solar System planet. The goal of this project is to pioneer the advances needed to understand condensible climate dynamics for the vastly broader range of condensible substances, thermodynamic and planetary configurations presented by the growing catalogue of exoplanets. The emphasis will be on the smaller range of planets (super-Earth to Earth mass or size class), which need not have hydrogen-dominated atmospheres and therefore present a richer and highly challenging variety of possible condensible behavior. This class of planets includes all planets that are potentially habitable for Earthlike life, but even planets that are far from habitable shed light on essential features of planets in the Universe, and will be studied. The work will embrace both small scale buoyancy-driven turbulent convection and planetary scale circulations. Idealized numerical simulations, buttressed by theoretical analysis will be employed. Particular emphasis will be put on aspects of exoclimate that are amenable to probing by current observations and improved observational techniques likely to become available in the coming decade. Such properties include cloud properties observable through transit-depth spectra and dayside/nightside temperature and composition contrasts observable through phase curve observations.
Summary
Condensible substances, which undergo a phase change from gaseous to liquid or solid condensed form, have a profound impact on planetary atmospheres, and are central to the determination of most key aspects of a planet's climate. The three phases of water operating in Earth's present climate provide the archetype for condensible processes in climate dynamics, but the dawning age of exoplanet discovery and characterization requires that the understanding of phase change effects be expanded far beyond the situations familiar from the study of Earth's climate, or indeed of the climate of any Solar System planet. The goal of this project is to pioneer the advances needed to understand condensible climate dynamics for the vastly broader range of condensible substances, thermodynamic and planetary configurations presented by the growing catalogue of exoplanets. The emphasis will be on the smaller range of planets (super-Earth to Earth mass or size class), which need not have hydrogen-dominated atmospheres and therefore present a richer and highly challenging variety of possible condensible behavior. This class of planets includes all planets that are potentially habitable for Earthlike life, but even planets that are far from habitable shed light on essential features of planets in the Universe, and will be studied. The work will embrace both small scale buoyancy-driven turbulent convection and planetary scale circulations. Idealized numerical simulations, buttressed by theoretical analysis will be employed. Particular emphasis will be put on aspects of exoclimate that are amenable to probing by current observations and improved observational techniques likely to become available in the coming decade. Such properties include cloud properties observable through transit-depth spectra and dayside/nightside temperature and composition contrasts observable through phase curve observations.
Max ERC Funding
2 492 565 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym GIANTCLIMES
Project Giants through Time: Towards a Comprehensive Giant Planet Climatology
Researcher (PI) Leigh Nicholas FLETCHER
Host Institution (HI) UNIVERSITY OF LEICESTER
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Giant planets serve as natural laboratories to explore the processes shaping planetary climate. The next five years will likely transform our understanding of the extreme environments of the outer Solar System, with the culmination of the Juno and Cassini missions to Jupiter and Saturn and the arrival of a new capability for ice giant science (James Webb Space Telescope, JWST). GIANTCLIMES will capitalise on this chance of a generation by assembling the first comprehensive climatology of all four giants. My programme will provide insights that no single mission can: exploring atmospheric variability over long time spans using an unprecedented multi-decade archive of ground-based observations; new data from space telescopes and planetary missions; combined with world-leading spectral analysis techniques and interpretive models. GIANTCLIMES consists of three objectives:
1. CLIMATE CYCLES: Assemble the first quasi-continuous record of Jovian climate over three decades to identify natural patterns of atmospheric variability to predict spectacular storm eruptions and global-scale transformations of its banded structure.
2. STRATOSPHERES: Explore the changing stratospheres of seasonal Saturn and non-seasonal Jupiter over long timescales to develop a new paradigm for the radiative, chemical and transport processes shaping these poorly-understood atmospheric regimes.
3. ICE GIANTS: Provide the benchmark for understanding the fundamental differences between Ice Giant and Gas Giant climate via existing Spitzer and Herschel observations of Uranus and Neptune, and produce the highly-anticipated first spatial maps of their stratospheres using JWST.
These projects will explore planetary climates in all their guises, using comparative remote sensing studies to understand the forces defining their natural variability. New insights and discoveries from GIANTCLIMES will reinforce my leading role in the next generation of ambitious missions to explore the giant planets.
Summary
Giant planets serve as natural laboratories to explore the processes shaping planetary climate. The next five years will likely transform our understanding of the extreme environments of the outer Solar System, with the culmination of the Juno and Cassini missions to Jupiter and Saturn and the arrival of a new capability for ice giant science (James Webb Space Telescope, JWST). GIANTCLIMES will capitalise on this chance of a generation by assembling the first comprehensive climatology of all four giants. My programme will provide insights that no single mission can: exploring atmospheric variability over long time spans using an unprecedented multi-decade archive of ground-based observations; new data from space telescopes and planetary missions; combined with world-leading spectral analysis techniques and interpretive models. GIANTCLIMES consists of three objectives:
1. CLIMATE CYCLES: Assemble the first quasi-continuous record of Jovian climate over three decades to identify natural patterns of atmospheric variability to predict spectacular storm eruptions and global-scale transformations of its banded structure.
2. STRATOSPHERES: Explore the changing stratospheres of seasonal Saturn and non-seasonal Jupiter over long timescales to develop a new paradigm for the radiative, chemical and transport processes shaping these poorly-understood atmospheric regimes.
3. ICE GIANTS: Provide the benchmark for understanding the fundamental differences between Ice Giant and Gas Giant climate via existing Spitzer and Herschel observations of Uranus and Neptune, and produce the highly-anticipated first spatial maps of their stratospheres using JWST.
These projects will explore planetary climates in all their guises, using comparative remote sensing studies to understand the forces defining their natural variability. New insights and discoveries from GIANTCLIMES will reinforce my leading role in the next generation of ambitious missions to explore the giant planets.
Max ERC Funding
1 999 815 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym GMGalaxies
Project Understanding the diversity of galaxy morphology in the era of large spectroscopic surveys
Researcher (PI) Andrew PONTZEN
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary Galaxies are the building blocks of structure in the Universe; this proposal seeks to understand how their shapes, colours and dynamics are determined. For example, what happened in the history of some galaxies to transform them into passive ellipticals while others, seemingly of the same mass and in the same environment, are star-forming spirals? Even such a basic question about the link between morphology and star formation has not yet been answered, revealing our theories of galaxy formation are inadequate. This is a major concern in an era where understanding the shapes of galaxies and how they relate to the underlying dark matter is essential for progress in precision cosmology.
This project will build the missing link between the history of a galaxy and its observational properties (i.e. between cause and effect) by using numerical simulations. Current research in this area rightly gives significant attention to the crucial problem of how feedback – energy input from supernovae, active galactic nuclei, and more – affect observable properties. But as well as investigating this avenue, GM Galaxies will uniquely make use of my new technique (“genetic modification”) to systematically investigate the role of the galaxy’s merging and accretion history at high resolution.
To distinguish the fingerprints of history from the effects of feedback, we will compare to rich new data from integral field unit surveys; these reveal, for example, galactic metallicity and velocity maps. My pilot study for this project shows that such measures of a galaxy disambiguate between alternative formation routes to galaxies which would appear similar by photometric measures alone. Similarly, we will make predictions for the observable properties of the gas reservoir surrounding galaxies and for integral field observations at high redshift. In this way we will make a predictive account of how galactic structure is determined by the interaction of the accretion history with feedback.
Summary
Galaxies are the building blocks of structure in the Universe; this proposal seeks to understand how their shapes, colours and dynamics are determined. For example, what happened in the history of some galaxies to transform them into passive ellipticals while others, seemingly of the same mass and in the same environment, are star-forming spirals? Even such a basic question about the link between morphology and star formation has not yet been answered, revealing our theories of galaxy formation are inadequate. This is a major concern in an era where understanding the shapes of galaxies and how they relate to the underlying dark matter is essential for progress in precision cosmology.
This project will build the missing link between the history of a galaxy and its observational properties (i.e. between cause and effect) by using numerical simulations. Current research in this area rightly gives significant attention to the crucial problem of how feedback – energy input from supernovae, active galactic nuclei, and more – affect observable properties. But as well as investigating this avenue, GM Galaxies will uniquely make use of my new technique (“genetic modification”) to systematically investigate the role of the galaxy’s merging and accretion history at high resolution.
To distinguish the fingerprints of history from the effects of feedback, we will compare to rich new data from integral field unit surveys; these reveal, for example, galactic metallicity and velocity maps. My pilot study for this project shows that such measures of a galaxy disambiguate between alternative formation routes to galaxies which would appear similar by photometric measures alone. Similarly, we will make predictions for the observable properties of the gas reservoir surrounding galaxies and for integral field observations at high redshift. In this way we will make a predictive account of how galactic structure is determined by the interaction of the accretion history with feedback.
Max ERC Funding
1 741 230 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ICYBOB
Project Initial Conditions of YMCs, Birth of OB associations and long term evolution of stellar clusters
Researcher (PI) Clare Louise DOBBS
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary The goal of this proposal is to establish a new era of stellar cluster evolution research by performing numerical simulations on different scales, and of different stages of a cluster’s life, from the formation of YMCs, the formation and evolution of OB associations, to the evolution of clusters and associations in galaxies. The PI is one of the pioneers of galactic simulations of GMC and star formation was one of the first numericists to perform galactic scale simulations of molecular cloud formation and evolution, and has produced some of the most realistic and sophisticated isolated simulations of galaxies in this field to date. The next challenge is to follow cluster evolution, something which has not yet been attempted numerically. And, with the GaiaAIA instrument set to transform stellar astronomy in our Galaxy, our work will provide a fundamental theoretical counterpart. Key questions we will address include i) how does gas disperse from new clusters and what happens to that gas, ii) how do YMCs form, iii) how do new clustersGiant Molecular Clouds (GMCs) evolve into OB associations, and ivii) how long can clusters survive for as they orbit a galaxy and what causes their destruction.
Summary
The goal of this proposal is to establish a new era of stellar cluster evolution research by performing numerical simulations on different scales, and of different stages of a cluster’s life, from the formation of YMCs, the formation and evolution of OB associations, to the evolution of clusters and associations in galaxies. The PI is one of the pioneers of galactic simulations of GMC and star formation was one of the first numericists to perform galactic scale simulations of molecular cloud formation and evolution, and has produced some of the most realistic and sophisticated isolated simulations of galaxies in this field to date. The next challenge is to follow cluster evolution, something which has not yet been attempted numerically. And, with the GaiaAIA instrument set to transform stellar astronomy in our Galaxy, our work will provide a fundamental theoretical counterpart. Key questions we will address include i) how does gas disperse from new clusters and what happens to that gas, ii) how do YMCs form, iii) how do new clustersGiant Molecular Clouds (GMCs) evolve into OB associations, and ivii) how long can clusters survive for as they orbit a galaxy and what causes their destruction.
Max ERC Funding
1 980 385 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym MassiveCosmo
Project Massive Gravity and Cosmology
Researcher (PI) Claudia Anna DE RHAM
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary The ambition of this research program is to challenge the nature of gravity, provide an alternative to dark energy, and pave the way towards a potential resolution of one the most tantalizing problems of physics today: The Old Cosmological Constant Problem.
As General Relativity celebrates its centennial, its predictive successes and its status as our most elegant theory of gravity are incontrovertible. Nevertheless, while the recent discovery of the late-time acceleration of the Universe is in perfect agreement with observations, the 120 orders of magnitude discrepancy between expectations and observations is one of today's most challenging puzzles and may be the sign of new physics to uncover. This conundrum has driven the development of dark energy models as alternative sources for acceleration, but many of them suffer from a similar discrepancy and require an unnatural tuning of their parameters. Despite decades of attempts, the Old Cosmological Constant Problem remains yet unsolved.
This program proposes a distinct direction to address this problem and to explain the acceleration of the Universe where the graviton, the particle carrier of gravity, has a mass, or is effectively massive. Not only will this open a new panorama for cosmology, it will also answer the fundamental question of the nature of the graviton. Signatures and constraints will be derived through astrophysical and cosmological probes.
While striving to address these fundamental challenges, the program will also elucidate new aspects of massive gravity by establishing its theoretical viability and embedding as an effective field theory. These developments will feed into new breakthroughs that have recently emerged from massive gravity.
As major missions and experiments are underway to probe dark energy and to detect gravitational waves, there is no better time to question gravity at the fundamental level, to provide alternatives to dark energy and to determine their unique signatures.
Summary
The ambition of this research program is to challenge the nature of gravity, provide an alternative to dark energy, and pave the way towards a potential resolution of one the most tantalizing problems of physics today: The Old Cosmological Constant Problem.
As General Relativity celebrates its centennial, its predictive successes and its status as our most elegant theory of gravity are incontrovertible. Nevertheless, while the recent discovery of the late-time acceleration of the Universe is in perfect agreement with observations, the 120 orders of magnitude discrepancy between expectations and observations is one of today's most challenging puzzles and may be the sign of new physics to uncover. This conundrum has driven the development of dark energy models as alternative sources for acceleration, but many of them suffer from a similar discrepancy and require an unnatural tuning of their parameters. Despite decades of attempts, the Old Cosmological Constant Problem remains yet unsolved.
This program proposes a distinct direction to address this problem and to explain the acceleration of the Universe where the graviton, the particle carrier of gravity, has a mass, or is effectively massive. Not only will this open a new panorama for cosmology, it will also answer the fundamental question of the nature of the graviton. Signatures and constraints will be derived through astrophysical and cosmological probes.
While striving to address these fundamental challenges, the program will also elucidate new aspects of massive gravity by establishing its theoretical viability and embedding as an effective field theory. These developments will feed into new breakthroughs that have recently emerged from massive gravity.
As major missions and experiments are underway to probe dark energy and to detect gravitational waves, there is no better time to question gravity at the fundamental level, to provide alternatives to dark energy and to determine their unique signatures.
Max ERC Funding
1 975 829 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym MOPPEX
Project MOlecules as Probes of the Physics of EXternal galaxies
Researcher (PI) Serena Viti
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE9, ERC-2018-ADG
Summary Molecules pervade the cooler, denser parts of our Universe, in particular the reservoirs of the matter that forms stars and planets, and the gas in the centres of galaxies. In the Milky Way we routinely use molecules to discover and explore these regions and the more complex the chemistry, the more details of the gas the molecules reveal. There are one hundred billion galaxies in the observable Universe. About 200 or so are our neighbours. However, due to their distance, we are still not able to zoom in and observe individual clouds of dense gas. Nevertheless with the advent of ever more sensitive telescopes such as ALMA, we are discovering that chemistry in external galaxies is as complex as in our own Milky Way. Molecules, it seems, are universal and widespread.
In MOPPEX I use molecules to shed light on the physical and chemical structure of our local galaxies, namely (i) what the energetic processes that determine their appearance are and (ii) where the matter that will form stars or fuels black holes is, with the ultimate goal to understand how galaxies form, evolve and interact with each other. To achieve this objective I propose a multi-faceted program that combines state of the art chemical and statistical models in conjunction with interferometric observations. More specifically, the success of MOPPEX relies on (i) in-house and open source suites of chemical models and an in-house line radiative transfer model, (ii) a new suite of tools comprising of modular statistical and machine learning algorithms, and (iii) large datasets of observational data on two nearby galaxies differing in types.
My ultimate objective is to fundamentally change the way molecular observations are interpreted for external galaxies and thus to cause a paradigm shift in the use of molecules as tools to determine the chemistry and physics of galaxies.
Summary
Molecules pervade the cooler, denser parts of our Universe, in particular the reservoirs of the matter that forms stars and planets, and the gas in the centres of galaxies. In the Milky Way we routinely use molecules to discover and explore these regions and the more complex the chemistry, the more details of the gas the molecules reveal. There are one hundred billion galaxies in the observable Universe. About 200 or so are our neighbours. However, due to their distance, we are still not able to zoom in and observe individual clouds of dense gas. Nevertheless with the advent of ever more sensitive telescopes such as ALMA, we are discovering that chemistry in external galaxies is as complex as in our own Milky Way. Molecules, it seems, are universal and widespread.
In MOPPEX I use molecules to shed light on the physical and chemical structure of our local galaxies, namely (i) what the energetic processes that determine their appearance are and (ii) where the matter that will form stars or fuels black holes is, with the ultimate goal to understand how galaxies form, evolve and interact with each other. To achieve this objective I propose a multi-faceted program that combines state of the art chemical and statistical models in conjunction with interferometric observations. More specifically, the success of MOPPEX relies on (i) in-house and open source suites of chemical models and an in-house line radiative transfer model, (ii) a new suite of tools comprising of modular statistical and machine learning algorithms, and (iii) large datasets of observational data on two nearby galaxies differing in types.
My ultimate objective is to fundamentally change the way molecular observations are interpreted for external galaxies and thus to cause a paradigm shift in the use of molecules as tools to determine the chemistry and physics of galaxies.
Max ERC Funding
2 461 503 €
Duration
Start date: 2019-12-01, End date: 2024-11-30