Project acronym BETWEEN THE TIMES
Project “Between the Times”: Embattled Temporalities and Political Imagination in Interwar Europe
Researcher (PI) Liisi KEEDUS
Host Institution (HI) TALLINN UNIVERSITY
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Summary
The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Max ERC Funding
1 425 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym Cat-In-hAT
Project Catastrophic Interactions of Binary Stars and the Associated Transients
Researcher (PI) Ondrej PEJCHA
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary "One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Summary
"One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Max ERC Funding
1 243 219 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym COSMASS
Project Constraining Stellar Mass and Supermassive Black Hole Growth through Cosmic Times: Paving the way for the next generation sky surveys
Researcher (PI) Vernesa Smolcic
Host Institution (HI) FACULTY OF SCIENCE UNIVERSITY OF ZAGREB
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Summary
Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym LONGWOOD
Project Long-term woodland dynamics in Central Europe: from estimations to a realistic model
Researcher (PI) Péter Szabó
Host Institution (HI) BOTANICKY USTAV AV CR, V.V.I.
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary The vegetation of Central Europe has been directly influenced by humans for at least eight millennia; the original forests have been gradually transformed into today’s agricultural landscape. However, there is more to this landscape change than the simple disappearance of woodland. Forests have been brought under various management regimes, which profoundly altered their structure and species composition. The details of this process are little known for two main reasons. The greatest obstacle is the lack of cooperation among the disciplines dealing with the subject. The second major problem is the differences in spatio-temporal scaling and resolution used by the individual disciplines. Existing studies either concern smaller territories, or cover large areas (continental to global) with the help of modelling-based generalizations rather than primary data from the past. Using an extensive range of primary sources from history, historical geography, palaeoecology, archaeology and ecology, this interdisciplinary project aims to reconstruct the long-term (Neolithic to present) patterns of woodland cover, structure, composition and management in a larger study region (Moravia, the Czech Republic, ca. 27,000 km2) with the highest spatio-temporal resolution possible. Causes for the patterns observed will be analyzed in terms of qualitative and quantitative factors, both natural and human-driven, and the patterns in the tree layer will be related to those in the herb layer, which constitutes the most important part of plant biodiversity in Europe. This project will introduce woodland management as an equal driving force into long-term woodland dynamics, thus fostering a paradigm shift in ecology towards construing humans as an internal, constitutive element of ecosystems. By integrating sources and methods from the natural sciences and the humanities, the project will provide a more reliable basis for woodland management and conservation in Central Europe.
Summary
The vegetation of Central Europe has been directly influenced by humans for at least eight millennia; the original forests have been gradually transformed into today’s agricultural landscape. However, there is more to this landscape change than the simple disappearance of woodland. Forests have been brought under various management regimes, which profoundly altered their structure and species composition. The details of this process are little known for two main reasons. The greatest obstacle is the lack of cooperation among the disciplines dealing with the subject. The second major problem is the differences in spatio-temporal scaling and resolution used by the individual disciplines. Existing studies either concern smaller territories, or cover large areas (continental to global) with the help of modelling-based generalizations rather than primary data from the past. Using an extensive range of primary sources from history, historical geography, palaeoecology, archaeology and ecology, this interdisciplinary project aims to reconstruct the long-term (Neolithic to present) patterns of woodland cover, structure, composition and management in a larger study region (Moravia, the Czech Republic, ca. 27,000 km2) with the highest spatio-temporal resolution possible. Causes for the patterns observed will be analyzed in terms of qualitative and quantitative factors, both natural and human-driven, and the patterns in the tree layer will be related to those in the herb layer, which constitutes the most important part of plant biodiversity in Europe. This project will introduce woodland management as an equal driving force into long-term woodland dynamics, thus fostering a paradigm shift in ecology towards construing humans as an internal, constitutive element of ecosystems. By integrating sources and methods from the natural sciences and the humanities, the project will provide a more reliable basis for woodland management and conservation in Central Europe.
Max ERC Funding
1 413 474 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym THEMODS
Project Theories and Models of the Dark Sector: Dark Matter, Dark Energy and Gravity
Researcher (PI) Constantinos Skordis
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary Modern cosmology assumes that General Relativity (GR) is the correct description of gravity on large scales. With this assumption and according to current data, the cosmological model needs in addition the existence of a Dark Sector: Dark Matter (DM) and Dark Energy (DE). We know very little about the nature of DM and it is yet to be detected experimentally. The simplest form of DE compatible with the data, a cosmological constant, has a value incompatible with our understanding of Quantum Field Theory. Given that the extrapolation of GR to cosmological scales has not been tested it is possible that the inference of the Dark Sector also needs to be revised.
I propose to (i) determine the nature of DM and DE to a level not achieved before, (ii) test gravity on cosmological scales and (iii) test the screening of new gravitational degrees of freedom in the solar system. The first two goals will require the use of my general framework to parameterize field equations [Skordis, PRD 79, 123527 (2008); Baker, Ferreira & Skordis, PRD 87, 024015 (2013)]. My team will use this framework to construct simple models and observations to place limits on their parameters. We will employ the Cosmic Microwave Background (CMB) observations from ESA's Planck Surveyor and the Atacama Cosmology Telescope. We will determine the sensitivity of the CMB lensing to the properties of DM and theories of gravity. To break possible degeneracies these data will be supplemented with large-scale structure data, weak lensing and red-shift space distortions. We will also perform forecasting for ESA's EUCLID mission which will give us a handle on how well we will constrain GR with cosmology in the future. For the final goal (iii) we will employ the method of [Padilla & Saffin, JHEP 1207, 122 (2012)] to construct a perturbative expansion of theories that exhibit screening, inside the screening radius. We will determine the compatibility of such theories with solar system and other strong-field data.
Summary
Modern cosmology assumes that General Relativity (GR) is the correct description of gravity on large scales. With this assumption and according to current data, the cosmological model needs in addition the existence of a Dark Sector: Dark Matter (DM) and Dark Energy (DE). We know very little about the nature of DM and it is yet to be detected experimentally. The simplest form of DE compatible with the data, a cosmological constant, has a value incompatible with our understanding of Quantum Field Theory. Given that the extrapolation of GR to cosmological scales has not been tested it is possible that the inference of the Dark Sector also needs to be revised.
I propose to (i) determine the nature of DM and DE to a level not achieved before, (ii) test gravity on cosmological scales and (iii) test the screening of new gravitational degrees of freedom in the solar system. The first two goals will require the use of my general framework to parameterize field equations [Skordis, PRD 79, 123527 (2008); Baker, Ferreira & Skordis, PRD 87, 024015 (2013)]. My team will use this framework to construct simple models and observations to place limits on their parameters. We will employ the Cosmic Microwave Background (CMB) observations from ESA's Planck Surveyor and the Atacama Cosmology Telescope. We will determine the sensitivity of the CMB lensing to the properties of DM and theories of gravity. To break possible degeneracies these data will be supplemented with large-scale structure data, weak lensing and red-shift space distortions. We will also perform forecasting for ESA's EUCLID mission which will give us a handle on how well we will constrain GR with cosmology in the future. For the final goal (iii) we will employ the method of [Padilla & Saffin, JHEP 1207, 122 (2012)] to construct a perturbative expansion of theories that exhibit screening, inside the screening radius. We will determine the compatibility of such theories with solar system and other strong-field data.
Max ERC Funding
1 150 691 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym UnRef
Project Unlikely refuge? Refugees and citizens in East-Central Europe in the 20th century
Researcher (PI) Michal FRANKL
Host Institution (HI) MASARYKUV USTAV A ARCHIV AV CR VVI
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary The project aims to write refugees back into the history of East-Central Europe in the 20th century. In this “age of refugees”, the region became a destination of large refugee migrations, forcing civil societies and governments to negotiate difficult decisions about protection for those fleeing the war and persecution. Yet, at the same time, East-Central Europe does not enjoy the reputation as a welcoming place for people persecuted for political persuasion, for their “racial”, ethnic identity or any other reason. It would appear that the histories of ethnic conflict and violence, political oppression and economic underdevelopment make it a place to leave behind rather than to search for as a safe harbour.
Studies about specific groups and instances notwithstanding, historical research remains highly unsatisfactory, failing to address refugee protection in a systematic comparative way and transcending national master narratives. Worse than this, historical writing about refugees in the “East” often re-inscribes the very (ethnic, political) categories which lead to the production of refugees in the first place.
Comparative research spanning across a longer period and a wider territory promises therefore not only major insights about the “East” as a refuge, but also a significant contribution to the emerging field of global refugee history. In this project, an international research team led by the PI will, using comparative historical research combined with multi-disciplinary approaches, probe the multifaceted entanglements with refugees in countries created in 1918 on the ruins of the Habsburg Monarchy (Poland, Czechoslovakia, Austria, Hungary, Yugoslavia) over the 20th century. By doing so, it wishes to return the discussion of protection of refugees into the region’s history and to contribute – from a scholarly perspective – to the cultivation of current and future public debate about this divisive subject.
Summary
The project aims to write refugees back into the history of East-Central Europe in the 20th century. In this “age of refugees”, the region became a destination of large refugee migrations, forcing civil societies and governments to negotiate difficult decisions about protection for those fleeing the war and persecution. Yet, at the same time, East-Central Europe does not enjoy the reputation as a welcoming place for people persecuted for political persuasion, for their “racial”, ethnic identity or any other reason. It would appear that the histories of ethnic conflict and violence, political oppression and economic underdevelopment make it a place to leave behind rather than to search for as a safe harbour.
Studies about specific groups and instances notwithstanding, historical research remains highly unsatisfactory, failing to address refugee protection in a systematic comparative way and transcending national master narratives. Worse than this, historical writing about refugees in the “East” often re-inscribes the very (ethnic, political) categories which lead to the production of refugees in the first place.
Comparative research spanning across a longer period and a wider territory promises therefore not only major insights about the “East” as a refuge, but also a significant contribution to the emerging field of global refugee history. In this project, an international research team led by the PI will, using comparative historical research combined with multi-disciplinary approaches, probe the multifaceted entanglements with refugees in countries created in 1918 on the ruins of the Habsburg Monarchy (Poland, Czechoslovakia, Austria, Hungary, Yugoslavia) over the 20th century. By doing so, it wishes to return the discussion of protection of refugees into the region’s history and to contribute – from a scholarly perspective – to the cultivation of current and future public debate about this divisive subject.
Max ERC Funding
1 995 950 €
Duration
Start date: 2019-09-01, End date: 2024-08-31