Project acronym ADONIS
Project Attosecond Dynamics On Interfaces and Solids
Researcher (PI) Reinhard Kienberger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Summary
New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Max ERC Funding
1 296 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym ATOMPHOTONLOQIP
Project Experimental Linear Optics Quantum Information Processing with Atoms and Photons
Researcher (PI) Jian-Wei Pan
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Summary
Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Max ERC Funding
1 435 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31
Project acronym BIMOC
Project Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology
Researcher (PI) Magnus Rueping
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Summary
Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Max ERC Funding
999 960 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym BIOCERENG
Project Bioceramics: Multiscale Engineering of Advanced Ceramics at the Biology Interface
Researcher (PI) Kurosch Rezwan
Host Institution (HI) UNIVERSITAET BREMEN
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary In the last decades, Materials Sciences and Life Sciences, two highly dynamically evolving and interdisciplinary research areas, have been influencing natural and engineering sciences significantly, creating new challenges and opportunities. A prime example for an increasing synergetic overlap of Materials and Life Sciences is provided by biomedical and bioengineering applications, which are of great academic, but also of steadily increasing societal and commercial interest. Bridging the traditional borders of disciplinary thinking in these areas has become one of today’s most challenging tasks for scientists. One group of key materials that are of great importance to biomedical engineering and bioengineering are advanced oxide and non-oxide ceramics with specific functionalities towards biological environments, so-called Bioceramics. The interplay at the interface of ceramics-protein-cells/bacteria is very complex and requires multiscale and interdisciplinary approaches. This expertise, that is under continuous development in my Bioceramics group, encompasses materials processing, shaping, surface functionalisation and cells/bacteria evaluation at the same time. The comprehensive research environment and expertise provides a unique opportunity to engineer materials/surfaces with immediate subsequent biological evaluation in order to achieve an extremely short development time. A centre of focus is the contribution of electrostatic and hydrophilic/hydrophobic interactions to the overall biocompatibility and -activity. The proposed research project includes four closely interrelated subprojects, addressing the following topics: “Interaction of surface functionalised ceramic particles with proteins”, “Cytotoxicity of functionalised oxide particles”, “Fabrication and testing of functionalised porous Al2O3 as filters for water cleaning and bioengineering applications” and “Novel functional scaffold composites for bone tissue engineering”.
Summary
In the last decades, Materials Sciences and Life Sciences, two highly dynamically evolving and interdisciplinary research areas, have been influencing natural and engineering sciences significantly, creating new challenges and opportunities. A prime example for an increasing synergetic overlap of Materials and Life Sciences is provided by biomedical and bioengineering applications, which are of great academic, but also of steadily increasing societal and commercial interest. Bridging the traditional borders of disciplinary thinking in these areas has become one of today’s most challenging tasks for scientists. One group of key materials that are of great importance to biomedical engineering and bioengineering are advanced oxide and non-oxide ceramics with specific functionalities towards biological environments, so-called Bioceramics. The interplay at the interface of ceramics-protein-cells/bacteria is very complex and requires multiscale and interdisciplinary approaches. This expertise, that is under continuous development in my Bioceramics group, encompasses materials processing, shaping, surface functionalisation and cells/bacteria evaluation at the same time. The comprehensive research environment and expertise provides a unique opportunity to engineer materials/surfaces with immediate subsequent biological evaluation in order to achieve an extremely short development time. A centre of focus is the contribution of electrostatic and hydrophilic/hydrophobic interactions to the overall biocompatibility and -activity. The proposed research project includes four closely interrelated subprojects, addressing the following topics: “Interaction of surface functionalised ceramic particles with proteins”, “Cytotoxicity of functionalised oxide particles”, “Fabrication and testing of functionalised porous Al2O3 as filters for water cleaning and bioengineering applications” and “Novel functional scaffold composites for bone tissue engineering”.
Max ERC Funding
1 536 120 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym BIOSTRUCT
Project Multiscale mathematical modelling of dynamics of structure formation in cell systems
Researcher (PI) Anna Marciniak-Czochra
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.
Summary
The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.
Max ERC Funding
750 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym ELNOX
Project Elemental nitrogen oxidation – A new bacterial process in the nitrogen cycle
Researcher (PI) Heide Schulz-Vogt
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE8, ERC-2007-StG
Summary The largest reservoir for nitrogen on earth is the atmosphere that contains 78 percent nitrogen gas. Until now the only known biological process interacting with elemental nitrogen is the bacterial reduction of nitrogen to ammonia for the build up of biomass (nitrogen fixation). This reaction requires energy and is only carried out in the absence of other nitrogen sources, such as ammonia or nitrate. Thermodynamically, the oxidation of nitrogen to nitrate with oxygen releases reasonable amounts of energy, but no bacterium using this redox couple has been known until today. We have isolated a marine bacterium, which is capable of growing in the dark with nitrogen gas as electron donor and oxygen as electron acceptor while forming nitrate. As this microorganism can also use carbondioxide as a carbon source it basically lives of air. While oxidizing atmospheric nitrogen gas the bacterium releases large amounts of nitrate and thereby enhances the amount of fixed nitrogen available for other organisms. At the moment the apparent flux of elemental nitrogen to the ocean by bacterial nitrogen fixation is much smaller than the loss of nitrogen through bacterial denitrification, suggesting that we are missing a major input of nitrogen. This newly discovered physiology of nitrogen oxidation could close this large gap in our understanding of the nitrogen cycle. The amount of biological available nitrogen determines the amount of biomass that can be build up by living organisms. Therefore, it is crucial to know the nitrogen flux into the biosphere, to understand the balances in the carbon cycle. In this project I propose to study this new bacterial physiology in order to understand, which factors control the activity of nitrogen oxidizing bacteria. We need to know how widespread these bacteria are, to estimate their influence on the global nitrogen cycle, and I propose to investigate the interactions between nitrogen oxidizers and other relevant bacteria of the nitrogen cycle.
Summary
The largest reservoir for nitrogen on earth is the atmosphere that contains 78 percent nitrogen gas. Until now the only known biological process interacting with elemental nitrogen is the bacterial reduction of nitrogen to ammonia for the build up of biomass (nitrogen fixation). This reaction requires energy and is only carried out in the absence of other nitrogen sources, such as ammonia or nitrate. Thermodynamically, the oxidation of nitrogen to nitrate with oxygen releases reasonable amounts of energy, but no bacterium using this redox couple has been known until today. We have isolated a marine bacterium, which is capable of growing in the dark with nitrogen gas as electron donor and oxygen as electron acceptor while forming nitrate. As this microorganism can also use carbondioxide as a carbon source it basically lives of air. While oxidizing atmospheric nitrogen gas the bacterium releases large amounts of nitrate and thereby enhances the amount of fixed nitrogen available for other organisms. At the moment the apparent flux of elemental nitrogen to the ocean by bacterial nitrogen fixation is much smaller than the loss of nitrogen through bacterial denitrification, suggesting that we are missing a major input of nitrogen. This newly discovered physiology of nitrogen oxidation could close this large gap in our understanding of the nitrogen cycle. The amount of biological available nitrogen determines the amount of biomass that can be build up by living organisms. Therefore, it is crucial to know the nitrogen flux into the biosphere, to understand the balances in the carbon cycle. In this project I propose to study this new bacterial physiology in order to understand, which factors control the activity of nitrogen oxidizing bacteria. We need to know how widespread these bacteria are, to estimate their influence on the global nitrogen cycle, and I propose to investigate the interactions between nitrogen oxidizers and other relevant bacteria of the nitrogen cycle.
Max ERC Funding
1 450 673 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym EMIL
Project Exceptional Materials via Ionic Liquids
Researcher (PI) Anja-Verena Mudring
Host Institution (HI) RUHR-UNIVERSITAET BOCHUM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Novel and improved nanomaterials with luminescent properties shall be synthesized in ionic liquids (ILs). In this approach the advantages of ionic liquids in nanoparticles synthesis (high nucleation rate, excellent electrosteric nanoparticles (NP) stabilization, morphology control, tunable properties) shall be combined with two unconventional synthesis methods that again take advantage of unique IL properties to obtain unprecedented compounds. Using a completely new and unconventional approach by evaporating metals, intermetallic phases or metal oxides and fluorides under high vacuum (negligible vapour pressure, low flammabilitly of ILs!) into ionic liquids goes far beyond the state of art of nanoparticle synthesis and is expected to have a high technological impact and should offer a way to highly thermodynamically unstable reaction product. Secondly, microwave (MW) irradiation (high polarizability and conductivity of IL ions makes them excellent MW acceptors) of appropriate metal salt/IL solutions should not only lead to NP/IL systems but the reaction of two NP/IL solutions should again lead to otherwise non-accessible reaction products. In combination, new materials with improved properties will be gained. For example, ILs will improve the lifetime of luminescent rare earth (RE)-based systems due to the weaker covalent RE solvent interaction. Analysis and property determinations of the systems under investigation will involve a variety of aspects of chemistry, physics and materials science.
Summary
Novel and improved nanomaterials with luminescent properties shall be synthesized in ionic liquids (ILs). In this approach the advantages of ionic liquids in nanoparticles synthesis (high nucleation rate, excellent electrosteric nanoparticles (NP) stabilization, morphology control, tunable properties) shall be combined with two unconventional synthesis methods that again take advantage of unique IL properties to obtain unprecedented compounds. Using a completely new and unconventional approach by evaporating metals, intermetallic phases or metal oxides and fluorides under high vacuum (negligible vapour pressure, low flammabilitly of ILs!) into ionic liquids goes far beyond the state of art of nanoparticle synthesis and is expected to have a high technological impact and should offer a way to highly thermodynamically unstable reaction product. Secondly, microwave (MW) irradiation (high polarizability and conductivity of IL ions makes them excellent MW acceptors) of appropriate metal salt/IL solutions should not only lead to NP/IL systems but the reaction of two NP/IL solutions should again lead to otherwise non-accessible reaction products. In combination, new materials with improved properties will be gained. For example, ILs will improve the lifetime of luminescent rare earth (RE)-based systems due to the weaker covalent RE solvent interaction. Analysis and property determinations of the systems under investigation will involve a variety of aspects of chemistry, physics and materials science.
Max ERC Funding
999 848 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym EMPATHICBRAIN
Project Plasticity of the Empathic Brain: Structural and Functional MRI Studies on the Effect of Empathy Training on the Human Brain and Prosocial Behaviour
Researcher (PI) Tania Singer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Summary
Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Max ERC Funding
1 499 821 €
Duration
Start date: 2008-09-01, End date: 2014-08-31
Project acronym EPIRNAS
Project Small RNA Mediated Epigenetics in Vertebrates
Researcher (PI) René Ketting
Host Institution (HI) INSTITUT FUR MOLEKULARE BIOLOGIE GGMBH
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Since the discovery of RNAi small RNA molecules have been under intense study. They have been shown to impact many different processes, ranging from development to organ function and carcinogenesis. Recently, it has become clear that many distinct small RNA families exist. However, all act through a member of the well-conserved Argonaute family of proteins. I try to understand how specificity of the different Argonaute proteins is achieved, and I am particularly interested in Argonautes that may contribute to the epigenetic marking of genomic DNA in animals. My focus is on Argonaute function in the vertebrate germline, a tissue that is an especially intriguing system with regard to the resetting and establishment of epigenetic marks. As model system I use the zebrafish. Piwi proteins are Argonaute proteins that in vertebrates are specifically expressed in germ cells, and have been implicated in modifying chromatin structures. We demonstrated that zebrafish piwi is expressed in both the male and the female gonad and that loss of piwi results in loss of germ cells due to apoptosis. We have characterized small RNAs that bind to piwi (piRNAs) in both ovary and testis, and found that they play a role in the silencing of transposable elements. Furthermore, we have shown that the biogenesis of piRNAs differs markedly from that of other small RNAs like miRNAs. The experiments I propose address how Piwi proteins and piRNAs act in germ cells to ensure a functional germline and a stable propagation of intact chromatin over generations. First, I will address the biogenesis of piRNAs. Second, I will identify novel components of the Piwi pathway. Third, I will address the mode(s) of action of piRNAs. On all fronts a combination of genetics, molecular biology and biochemistry will be used.
Summary
Since the discovery of RNAi small RNA molecules have been under intense study. They have been shown to impact many different processes, ranging from development to organ function and carcinogenesis. Recently, it has become clear that many distinct small RNA families exist. However, all act through a member of the well-conserved Argonaute family of proteins. I try to understand how specificity of the different Argonaute proteins is achieved, and I am particularly interested in Argonautes that may contribute to the epigenetic marking of genomic DNA in animals. My focus is on Argonaute function in the vertebrate germline, a tissue that is an especially intriguing system with regard to the resetting and establishment of epigenetic marks. As model system I use the zebrafish. Piwi proteins are Argonaute proteins that in vertebrates are specifically expressed in germ cells, and have been implicated in modifying chromatin structures. We demonstrated that zebrafish piwi is expressed in both the male and the female gonad and that loss of piwi results in loss of germ cells due to apoptosis. We have characterized small RNAs that bind to piwi (piRNAs) in both ovary and testis, and found that they play a role in the silencing of transposable elements. Furthermore, we have shown that the biogenesis of piRNAs differs markedly from that of other small RNAs like miRNAs. The experiments I propose address how Piwi proteins and piRNAs act in germ cells to ensure a functional germline and a stable propagation of intact chromatin over generations. First, I will address the biogenesis of piRNAs. Second, I will identify novel components of the Piwi pathway. Third, I will address the mode(s) of action of piRNAs. On all fronts a combination of genetics, molecular biology and biochemistry will be used.
Max ERC Funding
970 000 €
Duration
Start date: 2008-08-01, End date: 2014-07-31
Project acronym ERCSC-CHAIRS-SUP2010
Project Support to the Chair and Vice-Chairs of the ERC Scientific Council 2010
Host Institution (HI) WIENER WISSENSCHAFTS FORSCHUNGS UND TECHNOLOGIEFONDS
Call Details Support Actions (SA), FP7-Adhoc-2007-13
Summary "The proposed project aims to support the ScC Chair and Vice-Chairs in the efficient and timely achievement of the ScC objectives in 2010. It will support and assist Professor H. Nowotny, (Chair of the ERC ScC), Professor D. Esteve (Vice-Chair of the ERC ScC) and another member of the Scientific Council (to be elected as Vice-Chair of the ERC ScC) in their diverse responsibilities which include the achievement of efficient and effective functioning of the ScC as a policy making body, its integrated operation together with the ERC Executive Agency (ERCEA), and effective interfacing with the scientific community, other funding agencies and the political institutions of the European Union and beyond. The project will provide administrative, operational and research support ranging from secretarial tasks to assistance in developing policy papers, related to the work of the Chair and Vice-Chairs of the ERC Scientific Council for a period of ten months. The potential impact of the project will be to ensure an efficient and well-managed operation of the ERC ScC. By providing high-level local support for the EcC Chairman who is based at Wiener Wissenschafts Forschungs und Technologiefonds (WWTF) Vienna (Austria), and the two Vice-Chairs who are based at Commissariat Energie Atomique (CEA) - Saclay (France) and another institution, the project will complement the activities of and allow efficient interfacing with the ERCEA. Overall, the project is expected to contribute significantly to the implementation of the Ideas specific programme. The proposed project will be a continuation and expansion of the ongoing project ""ERCSC-CHAIRS-SUP2009—Support to the Chair and Vice-Chairs of the ERC Scientific Council 2009"" Project No. 243387."
Summary
"The proposed project aims to support the ScC Chair and Vice-Chairs in the efficient and timely achievement of the ScC objectives in 2010. It will support and assist Professor H. Nowotny, (Chair of the ERC ScC), Professor D. Esteve (Vice-Chair of the ERC ScC) and another member of the Scientific Council (to be elected as Vice-Chair of the ERC ScC) in their diverse responsibilities which include the achievement of efficient and effective functioning of the ScC as a policy making body, its integrated operation together with the ERC Executive Agency (ERCEA), and effective interfacing with the scientific community, other funding agencies and the political institutions of the European Union and beyond. The project will provide administrative, operational and research support ranging from secretarial tasks to assistance in developing policy papers, related to the work of the Chair and Vice-Chairs of the ERC Scientific Council for a period of ten months. The potential impact of the project will be to ensure an efficient and well-managed operation of the ERC ScC. By providing high-level local support for the EcC Chairman who is based at Wiener Wissenschafts Forschungs und Technologiefonds (WWTF) Vienna (Austria), and the two Vice-Chairs who are based at Commissariat Energie Atomique (CEA) - Saclay (France) and another institution, the project will complement the activities of and allow efficient interfacing with the ERCEA. Overall, the project is expected to contribute significantly to the implementation of the Ideas specific programme. The proposed project will be a continuation and expansion of the ongoing project ""ERCSC-CHAIRS-SUP2009—Support to the Chair and Vice-Chairs of the ERC Scientific Council 2009"" Project No. 243387."
Max ERC Funding
229 926 €
Duration
Start date: 2010-03-01, End date: 2010-12-31