Project acronym AXION
Project Axions: From Heaven to Earth
Researcher (PI) Frank Wilczek
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Summary
Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Max ERC Funding
2 324 391 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CAAXPROCESSINGHUMDIS
Project CAAX Protein Processing in Human DIsease: From Cancer to Progeria
Researcher (PI) Martin Olof Bergö
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Summary
My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Max ERC Funding
1 689 600 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym ERIKLINDAHLERC2007
Project Multiscale and Distributed Computing Algorithms for Biomolecular Simulation and Efficient Free Energy Calculations
Researcher (PI) Erik Lindahl
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Summary
The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Max ERC Funding
992 413 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym FatemapB
Project High Resolution Mapping of Fetal and Adult B Cell Fates During Ontogeny
Researcher (PI) Joan YUAN
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary FateMapB aims to understand how the unique differentiation potential of fetal hematopoietic stem and progenitor cells
(HSPCs) contribute to functionally distinct cell types of the adult immune system. While most immune cells are replenished
by HSPCs through life, others emerge during a limited window in fetal life and sustain through self-renewal in situ. The
lineage identity of fetal HSPCs, and the extent of their contribution to the adult immune repertoire remain surprisingly
unclear. I previously identified the fetal specific RNA binding protein Lin28b as a post-transcriptional molecular switch
capable of inducing fetal-like hematopoiesis in adult bone marrow HSPCs (Yuan et al. Science, 2012). This discovery has
afforded me with unique perspectives on the formation of the mammalian immune system. The concept that the mature
immune system is a mosaic of fetal and adult derived cell types is addressed herein with an emphasis on the B cell lineage.
We will use two complementary lineage-tracing technologies to stratify the immune system as a function of developmental
time, generating fundamental insight into the division of labor between fetal and adult HSPCs that ultimately provides
effective host protection.
Aim 1. Determine the qualitative and quantitative contribution of fetal HSPCs to the mature immune repertoire in situ
through Cre recombination mediated lineage-tracing.
Aim 2. Resolve the disputed lineage relationship between fetal derived B1a cells and adult derived B2 cells by single cell
lineage-tracing using cellular barcoding in vivo.
Aim 3. Characterize the mechanism and effector functions of Lin28b induced B1a cell development for assessing the
clinical utility of inducible fetal-like lymphopoiesis.
The implications of FateMapB extend beyond normal development to immune regeneration and age-related features of
leukemogenesis. Finally, our combinatorial lineage-tracing approach enables dissection of cell fates with previously
unattainable resolution.
Summary
FateMapB aims to understand how the unique differentiation potential of fetal hematopoietic stem and progenitor cells
(HSPCs) contribute to functionally distinct cell types of the adult immune system. While most immune cells are replenished
by HSPCs through life, others emerge during a limited window in fetal life and sustain through self-renewal in situ. The
lineage identity of fetal HSPCs, and the extent of their contribution to the adult immune repertoire remain surprisingly
unclear. I previously identified the fetal specific RNA binding protein Lin28b as a post-transcriptional molecular switch
capable of inducing fetal-like hematopoiesis in adult bone marrow HSPCs (Yuan et al. Science, 2012). This discovery has
afforded me with unique perspectives on the formation of the mammalian immune system. The concept that the mature
immune system is a mosaic of fetal and adult derived cell types is addressed herein with an emphasis on the B cell lineage.
We will use two complementary lineage-tracing technologies to stratify the immune system as a function of developmental
time, generating fundamental insight into the division of labor between fetal and adult HSPCs that ultimately provides
effective host protection.
Aim 1. Determine the qualitative and quantitative contribution of fetal HSPCs to the mature immune repertoire in situ
through Cre recombination mediated lineage-tracing.
Aim 2. Resolve the disputed lineage relationship between fetal derived B1a cells and adult derived B2 cells by single cell
lineage-tracing using cellular barcoding in vivo.
Aim 3. Characterize the mechanism and effector functions of Lin28b induced B1a cell development for assessing the
clinical utility of inducible fetal-like lymphopoiesis.
The implications of FateMapB extend beyond normal development to immune regeneration and age-related features of
leukemogenesis. Finally, our combinatorial lineage-tracing approach enables dissection of cell fates with previously
unattainable resolution.
Max ERC Funding
1 499 905 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym GLOBALVISION
Project Global Optimization Methods in Computer Vision, Pattern Recognition and Medical Imaging
Researcher (PI) Fredrik Kahl
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Summary
Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Max ERC Funding
1 440 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym HIGH-GEAR
Project High-valent protein-coordinated catalytic metal sites: Geometric and Electronic ARchitecture
Researcher (PI) Martin Ivar HÖGBOM
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary It is estimated that almost half of all enzymes utilize metal cofactors for their function, for example the respiratory complexes and the oxygen-evolving photosystem II, the most fundamental requirements for aerobic life as we know it. If we could mimic nature’s use of metals for harvesting sunlight, energy conversion and chemical synthesis it would eliminate the need for fossil fuels and greatly increase the possibilities of chemical industry while reducing the environmental impact. Achieving this type of chemistry is an outstanding testament to evolution and understanding it is a glaring challenge to mankind.
These types of reactions are based on very challenging redox chemistry (involving one or several electrons). The key catalytic species are generally high-valent metal clusters with a varying ligand environment, provided by the protein and other bound molecules, that directly controls the reactivity of the inorganic core. To be able to understand and mimic this chemistry it is of central importance to know the geometric and electronic structures of the metal core as well as the entire ligand environment for these usually short-lived and very reactive intermediates. It has, for a number of reasons, proven extremely challenging to obtain these for protein-coordinated catalysts.
The central goal of this project is to determine true and accurate geometric and electronic structures of high-valent di-nuclear Fe/Fe and Mn/Fe metal sites coordinated in protein matrices known to direct these for varied and important chemistry. By combining new X-ray diffraction based techniques with advanced spectroscopy we aim to define how the protein controls the entatic state as well as reactivity and mechanism for some of the most potent catalysts in nature. The results will serve as a basis for design of oxygen-activating catalysts with novel properties.
Summary
It is estimated that almost half of all enzymes utilize metal cofactors for their function, for example the respiratory complexes and the oxygen-evolving photosystem II, the most fundamental requirements for aerobic life as we know it. If we could mimic nature’s use of metals for harvesting sunlight, energy conversion and chemical synthesis it would eliminate the need for fossil fuels and greatly increase the possibilities of chemical industry while reducing the environmental impact. Achieving this type of chemistry is an outstanding testament to evolution and understanding it is a glaring challenge to mankind.
These types of reactions are based on very challenging redox chemistry (involving one or several electrons). The key catalytic species are generally high-valent metal clusters with a varying ligand environment, provided by the protein and other bound molecules, that directly controls the reactivity of the inorganic core. To be able to understand and mimic this chemistry it is of central importance to know the geometric and electronic structures of the metal core as well as the entire ligand environment for these usually short-lived and very reactive intermediates. It has, for a number of reasons, proven extremely challenging to obtain these for protein-coordinated catalysts.
The central goal of this project is to determine true and accurate geometric and electronic structures of high-valent di-nuclear Fe/Fe and Mn/Fe metal sites coordinated in protein matrices known to direct these for varied and important chemistry. By combining new X-ray diffraction based techniques with advanced spectroscopy we aim to define how the protein controls the entatic state as well as reactivity and mechanism for some of the most potent catalysts in nature. The results will serve as a basis for design of oxygen-activating catalysts with novel properties.
Max ERC Funding
1 968 375 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym MAGNETIC-SPEED-LIMIT
Project Understanding the speed limits of magnetism
Researcher (PI) Stefano BONETTI
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary While the origin of magnetic order in condensed matter is in the exchange and spin-orbit interactions, with time scales in the subpicosecond ranges, it has been long believed that magnetism could only be manipulated at nanosecond rates, exploiting dipolar interactions with external magnetic fields. However, in the past decade researchers have been able to observe ultrafast magnetic dynamics at its intrinsic time scales without the need for magnetic fields, thus revolutionising the view on the speed limits of magnetism. Despite many achievements in ultrafast magnetism, the understanding of the fundamental physics that allows for the ultrafast dissipation of angular momentum is still only partial, hampered by the lack of experimental techniques suited to fully explore these phenomena. However, the recent appearance of two new types of coherent radiation, single-cycle THz pulses and x-rays generated at free electron lasers (FELs), has provided researchers access to a whole new set of capabilities to tackle this challenge. This proposal suggests using these techniques to achieve an encompassing view of ultrafast magnetic dynamics in metallic ferromagnets, via the following three research objectives: (a) to reveal ultrafast dynamics driven by strong THz radiation in several magnetic systems using table-top femtosecond lasers; (b) to unravel the contribution of lattice dynamics to ultrafast demagnetization in different magnetic materials using the x-rays produced at FELs and (c) to directly image ultrafast spin currents by creating femtosecond movies with nanometre resolution. The proposed experiments are challenging and explore unchartered territories, but if successful, they will advance the understanding of the speed limits of magnetism, at the time scales of the exchange and spin-orbit interactions. They will also open up for future investigations of ultrafast magnetic phenomena in materials with large electronic correlations or spin-orbit coupling.
Summary
While the origin of magnetic order in condensed matter is in the exchange and spin-orbit interactions, with time scales in the subpicosecond ranges, it has been long believed that magnetism could only be manipulated at nanosecond rates, exploiting dipolar interactions with external magnetic fields. However, in the past decade researchers have been able to observe ultrafast magnetic dynamics at its intrinsic time scales without the need for magnetic fields, thus revolutionising the view on the speed limits of magnetism. Despite many achievements in ultrafast magnetism, the understanding of the fundamental physics that allows for the ultrafast dissipation of angular momentum is still only partial, hampered by the lack of experimental techniques suited to fully explore these phenomena. However, the recent appearance of two new types of coherent radiation, single-cycle THz pulses and x-rays generated at free electron lasers (FELs), has provided researchers access to a whole new set of capabilities to tackle this challenge. This proposal suggests using these techniques to achieve an encompassing view of ultrafast magnetic dynamics in metallic ferromagnets, via the following three research objectives: (a) to reveal ultrafast dynamics driven by strong THz radiation in several magnetic systems using table-top femtosecond lasers; (b) to unravel the contribution of lattice dynamics to ultrafast demagnetization in different magnetic materials using the x-rays produced at FELs and (c) to directly image ultrafast spin currents by creating femtosecond movies with nanometre resolution. The proposed experiments are challenging and explore unchartered territories, but if successful, they will advance the understanding of the speed limits of magnetism, at the time scales of the exchange and spin-orbit interactions. They will also open up for future investigations of ultrafast magnetic phenomena in materials with large electronic correlations or spin-orbit coupling.
Max ERC Funding
1 967 755 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym METLAKE
Project Predicting future methane fluxes from Northern lakes
Researcher (PI) DAVID TORBJORN EMANUEL BASTVIKEN
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary The new global temperature goal calls for reliable quantification of present and future greenhouse gas (GHG) emissions, including climate feedbacks. Non-CO2 GHGs, with methane (CH4) being the most important, represent a large but highly uncertain component in global GHG budget. Lakes are among the largest natural sources of CH4 but our understanding of lake CH4 fluxes is rudimentary. Lake emissions are not yet routinely monitored, and coherent, spatially representative, long-term datasets are rare which hamper accurate flux estimates and predictions.
METLAKE aims to improve our ability to quantify and predict lake CH4 emissions. Major goals include: (1) the development of robust validated predictive models suitable for use at the lake rich northern latitudes where large climate changes are anticipated in the near future, (2) the testing of the idea that appropriate consideration of spatiotemporal scaling can greatly facilitate generation of accurate yet simple predictive models, (3) to reveal and quantify detailed flux regulation patterns including spatiotemporal interactions and response times to environmental change, and (4) to pioneer novel use of sensor networks and near ground remote sensing with a new hyperspectral CH4 camera suitable for large-scale high resolution CH4 measurements.
Extensive field work based on optimized state-of-the-art approaches will generate multi-scale and multi-system data, supplemented by experiments, and evaluated by data analyses and modelling approaches targeting effects of scaling on model performance.
Altogether, METLAKE will advance our understanding of one of the largest natural CH4 sources, and provide us with systematic tools to predict future lake emissions. Such quantification of feedbacks on natural GHG emissions is required to move beyond state-of-the-art regarding global GHG budgets and to estimate the mitigation efforts needed to reach global climate goals.
Summary
The new global temperature goal calls for reliable quantification of present and future greenhouse gas (GHG) emissions, including climate feedbacks. Non-CO2 GHGs, with methane (CH4) being the most important, represent a large but highly uncertain component in global GHG budget. Lakes are among the largest natural sources of CH4 but our understanding of lake CH4 fluxes is rudimentary. Lake emissions are not yet routinely monitored, and coherent, spatially representative, long-term datasets are rare which hamper accurate flux estimates and predictions.
METLAKE aims to improve our ability to quantify and predict lake CH4 emissions. Major goals include: (1) the development of robust validated predictive models suitable for use at the lake rich northern latitudes where large climate changes are anticipated in the near future, (2) the testing of the idea that appropriate consideration of spatiotemporal scaling can greatly facilitate generation of accurate yet simple predictive models, (3) to reveal and quantify detailed flux regulation patterns including spatiotemporal interactions and response times to environmental change, and (4) to pioneer novel use of sensor networks and near ground remote sensing with a new hyperspectral CH4 camera suitable for large-scale high resolution CH4 measurements.
Extensive field work based on optimized state-of-the-art approaches will generate multi-scale and multi-system data, supplemented by experiments, and evaluated by data analyses and modelling approaches targeting effects of scaling on model performance.
Altogether, METLAKE will advance our understanding of one of the largest natural CH4 sources, and provide us with systematic tools to predict future lake emissions. Such quantification of feedbacks on natural GHG emissions is required to move beyond state-of-the-art regarding global GHG budgets and to estimate the mitigation efforts needed to reach global climate goals.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym MolStrucDyn
Project Ultrafast Molecular Structural Dynamics
Researcher (PI) Sebastian Westenhoff
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary Chemical reactions in solution are strongly influenced by femtosecond solvent-solute dynamics. Likewise, proteins provide specific environments to control the outcome of substrate reactions. The molecular understanding of these effect are currently poorly developed.
I propose to fill this knowledge gap by ‘filming’ elementary chemical reactions in solution and in proteins. I will pioneer new time-resolved scattering and diffraction experiments using X-ray Free Electron Lasers (XFELs).
Using femtosecond time-resolved X-ray scattering, I plan to decipher the structural dynamics of bond breaking and bond formation in iodine containing compounds in solution. I will pioneer time-resolved fluctuation correlation X-ray scattering to recover full electron density maps of the reaction trajectories at an atomic resolution. I will visualize the as yet unknown structures of reaction intermediates and the solvent response.
Furthermore, I propose to investigate the molecular photoresponse of phytochrome photoconversion with femtosecond time-resolved serial microcrystallography. Phytochromes are ubiquitous photosensory proteins in plants and are essential to all vegetation on earth. I will resolve how the chromophore and the protein react collectively to photoexcitation and how this leads to conformational changes.
Combined, this interdisciplinary project will yield microscopic understanding on how the surrounding of reactants guides the outcome of elementary (bio)chemical reactions.
This program builds on my strengths in structural biology of phytochromes (Takala et al., Nature, 2014), time-resolved X-ray scattering (Westenhoff et al., Nature Methods 2010), and femtosecond spectroscopy (21 papers in PRL, JACS, Nature Methods 2006-2012 & 2016).
The new XFEL-based methods will have wide-ranging applications in chemistry and biology. My work will open new horizons in physical chemistry and structural biology.
Summary
Chemical reactions in solution are strongly influenced by femtosecond solvent-solute dynamics. Likewise, proteins provide specific environments to control the outcome of substrate reactions. The molecular understanding of these effect are currently poorly developed.
I propose to fill this knowledge gap by ‘filming’ elementary chemical reactions in solution and in proteins. I will pioneer new time-resolved scattering and diffraction experiments using X-ray Free Electron Lasers (XFELs).
Using femtosecond time-resolved X-ray scattering, I plan to decipher the structural dynamics of bond breaking and bond formation in iodine containing compounds in solution. I will pioneer time-resolved fluctuation correlation X-ray scattering to recover full electron density maps of the reaction trajectories at an atomic resolution. I will visualize the as yet unknown structures of reaction intermediates and the solvent response.
Furthermore, I propose to investigate the molecular photoresponse of phytochrome photoconversion with femtosecond time-resolved serial microcrystallography. Phytochromes are ubiquitous photosensory proteins in plants and are essential to all vegetation on earth. I will resolve how the chromophore and the protein react collectively to photoexcitation and how this leads to conformational changes.
Combined, this interdisciplinary project will yield microscopic understanding on how the surrounding of reactants guides the outcome of elementary (bio)chemical reactions.
This program builds on my strengths in structural biology of phytochromes (Takala et al., Nature, 2014), time-resolved X-ray scattering (Westenhoff et al., Nature Methods 2010), and femtosecond spectroscopy (21 papers in PRL, JACS, Nature Methods 2006-2012 & 2016).
The new XFEL-based methods will have wide-ranging applications in chemistry and biology. My work will open new horizons in physical chemistry and structural biology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym PHOTOCHROMES
Project Photochromic Systems for Solid State Molecular Electronic Devices and Light-Activated Cancer Drugs
Researcher (PI) Joakim Andréasson
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Photochromic molecules, or photochromes, can be reversibly isomerized between two thermally stable forms by exposure to light of different wavelengths. Upon isomerization, properties such as excitation energies, redox properties, charge distribution, and structure experience significant changes. These changes can be harnessed to switch “on” or “off” the action of a variety of photophysical processes in the photochromic constructs, e.g., energy and electron transfer. Until now, the focus of my research has been to show proof of principle for a large selection of molecule-based photonically controlled logic devices (solution based) with the functional basis in the switching of the transfer processes mentioned above. Now, I wish to extend the study to include experiments in the solid state, e.g., polymer matrices. Taking the step into doing solid state chemistry is not only a prerequisite for any real-world application. It will also allow for experiments that cannot be performed in fluid solution, such as aligning molecules in a stretched film for chemistry with polarized light, and immobilization of molecules for selective addressing in a three-dimensional array of volume elements. Furthermore, I intend to investigate the possibility to photonically control the membrane penetrating and the DNA-binding abilities of photochromes, aiming at, in a long-term perspective, light-activated cancer drugs. Due to the fact that both the structure and the charge distribution of a photochrome may change drastically upon isomerization, one of the two isomeric forms is often suitable for penetrating a membrane. Inside the membrane, e.g., in a cell, the photochrome can be photo-isomerized to a structure with high affinity for strong binding to DNA. Upon binding, transcription is inhibited and the cell dies. If desired, pH-sensitivity and two-photon processes could be used to further increase the selectivity in addressing very specific regions of the body, such as a tumor.
Summary
Photochromic molecules, or photochromes, can be reversibly isomerized between two thermally stable forms by exposure to light of different wavelengths. Upon isomerization, properties such as excitation energies, redox properties, charge distribution, and structure experience significant changes. These changes can be harnessed to switch “on” or “off” the action of a variety of photophysical processes in the photochromic constructs, e.g., energy and electron transfer. Until now, the focus of my research has been to show proof of principle for a large selection of molecule-based photonically controlled logic devices (solution based) with the functional basis in the switching of the transfer processes mentioned above. Now, I wish to extend the study to include experiments in the solid state, e.g., polymer matrices. Taking the step into doing solid state chemistry is not only a prerequisite for any real-world application. It will also allow for experiments that cannot be performed in fluid solution, such as aligning molecules in a stretched film for chemistry with polarized light, and immobilization of molecules for selective addressing in a three-dimensional array of volume elements. Furthermore, I intend to investigate the possibility to photonically control the membrane penetrating and the DNA-binding abilities of photochromes, aiming at, in a long-term perspective, light-activated cancer drugs. Due to the fact that both the structure and the charge distribution of a photochrome may change drastically upon isomerization, one of the two isomeric forms is often suitable for penetrating a membrane. Inside the membrane, e.g., in a cell, the photochrome can be photo-isomerized to a structure with high affinity for strong binding to DNA. Upon binding, transcription is inhibited and the cell dies. If desired, pH-sensitivity and two-photon processes could be used to further increase the selectivity in addressing very specific regions of the body, such as a tumor.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31