Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym BrightEyes
Project Multi-Parameter Live-Cell Observation of Biomolecular Processes with Single-Photon Detector Array
Researcher (PI) Giuseppe Vicidomini
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Summary
Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales.
The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments.
Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy.
This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.
Max ERC Funding
1 861 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym DissectPcG
Project Dissecting the Function of Multiple Polycomb Group Complexes in Establishing Transcriptional Identity
Researcher (PI) Diego PASINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Summary
The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym FLAMENCO
Project A Fully-Implantable MEMS-Based Autonomous Cochlear Implant
Researcher (PI) Kulah Haluk
Host Institution (HI) MIDDLE EAST TECHNICAL UNIVERSITY
Call Details Consolidator Grant (CoG), PE7, ERC-2015-CoG
Summary Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Summary
Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Max ERC Funding
1 993 750 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym GEMS
Project General Embedding Models for Spectroscopy
Researcher (PI) Chiara CAPPELLI
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Recently, there has been a paradigmatic shift in experimental molecular spectroscopy, with new methods focusing on the study of molecules embedded within complex supramolecular/nanostructured aggregates. In the past, molecular spectroscopy has benefitted from the synergistic developments of accurate and cost-effective computational protocols for the simulation of a wide variety of spectroscopies. These methods, however, have been limited to isolated molecules or systems in solution, therefore are inadequate to describe the spectroscopy of complex nanostructured systems. The aim of GEMS is to bridge this gap, and to provide a coherent theoretical description and cost-effective computational tools for the simulation of spectra of molecules interacting with metal nano-particles, metal nanoaggregates and graphene sheets.
To this end, I will develop a novel frequency-dependent multilayer Quantum Mechanical (QM)/Molecular Mechanics (MM) embedding approach, general enough to be extendable to spectroscopic signals by using the machinery of quantum chemistry and able to treat any kind of plasmonic external environment by resorting to the same theoretical framework, but introducing its specificities through an accurate modelling and parametrization of the classical portion. The model will be interfaced with widely used computational chemistry software packages, so to maximize its use by the scientific community, and especially by non-specialists.
As pilot applications, GEMS will study the Surface-Enhanced Raman (SERS) spectra of systems that have found applications in the biosensor field, SERS of organic molecules in subnanometre junctions, enhanced infrared (IR) spectra of oligopeptides adsorbed on graphene, Graphene Enhanced Raman Scattering (GERS) of organic dyes, and the transmission of stereochemical response from a chiral analyte to an achiral molecule in the vicinity of a plasmon resonance of an achiral metallic nanostructure, as measured by Raman Optical Activity-ROA
Summary
Recently, there has been a paradigmatic shift in experimental molecular spectroscopy, with new methods focusing on the study of molecules embedded within complex supramolecular/nanostructured aggregates. In the past, molecular spectroscopy has benefitted from the synergistic developments of accurate and cost-effective computational protocols for the simulation of a wide variety of spectroscopies. These methods, however, have been limited to isolated molecules or systems in solution, therefore are inadequate to describe the spectroscopy of complex nanostructured systems. The aim of GEMS is to bridge this gap, and to provide a coherent theoretical description and cost-effective computational tools for the simulation of spectra of molecules interacting with metal nano-particles, metal nanoaggregates and graphene sheets.
To this end, I will develop a novel frequency-dependent multilayer Quantum Mechanical (QM)/Molecular Mechanics (MM) embedding approach, general enough to be extendable to spectroscopic signals by using the machinery of quantum chemistry and able to treat any kind of plasmonic external environment by resorting to the same theoretical framework, but introducing its specificities through an accurate modelling and parametrization of the classical portion. The model will be interfaced with widely used computational chemistry software packages, so to maximize its use by the scientific community, and especially by non-specialists.
As pilot applications, GEMS will study the Surface-Enhanced Raman (SERS) spectra of systems that have found applications in the biosensor field, SERS of organic molecules in subnanometre junctions, enhanced infrared (IR) spectra of oligopeptides adsorbed on graphene, Graphene Enhanced Raman Scattering (GERS) of organic dyes, and the transmission of stereochemical response from a chiral analyte to an achiral molecule in the vicinity of a plasmon resonance of an achiral metallic nanostructure, as measured by Raman Optical Activity-ROA
Max ERC Funding
1 609 500 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym PEP2D
Project Printable Electronics on Paper through 2D materials based inks
Researcher (PI) Gianluca FIORI
Host Institution (HI) UNIVERSITA DI PISA
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The vision behind the PEP2D project is to pioneer the realization of fully printed electronic circuits on flexible substrates as paper, leveraging the exceptional electronic properties of inks based on novel two- dimensional materials (2DMs), and through the wide-spread and low-cost inkjet printing technology.
The development of fully printed electronic systems on flexible substrates as paper could have an unpreceded economical and societal impact on the European Union. Unleashing the potential of this technology could open new and wide applications, ranging from bio (e.g., smart patches for biometric readings), to food/medicine quality control (e.g, smart tags for checking the breaking of cold chain), or to anti-counterfeiting of valuable goods, just to cite few.
Actually, technology is endeavouring to implement the main building blocks for electronic applications in the fast-growing market of flexible electronics expected to expand to 42 B€ by 2021, but available materials are missing the long-term stability and reliability, and device performance can be further improved. From this perspective, it is compulsory to develop new materials, and device architectures able to allow the fully printing of a working electronic system. PEP2D aims at designing a library of inkjet-printed electronic devices (transistors, and all linear and nonlinear components) and circuits (digital logic, memory circuits, amplifiers, transmitters, receivers) enabled by 2DMs based inks, to be eventually obtained through the use of a single tool as the inkjet process, without the need of any additional fabrications steps (i.e., use of resists, etching etc.) and in air (not in glovebox).
Such a goal will be achieved by means of the synergic and complementary activities pursued within the project and based on advanced modelling and design of inkjet-printed devices and circuits, which will lead the activity on the realization and measurements of printed electronic systems.
Summary
The vision behind the PEP2D project is to pioneer the realization of fully printed electronic circuits on flexible substrates as paper, leveraging the exceptional electronic properties of inks based on novel two- dimensional materials (2DMs), and through the wide-spread and low-cost inkjet printing technology.
The development of fully printed electronic systems on flexible substrates as paper could have an unpreceded economical and societal impact on the European Union. Unleashing the potential of this technology could open new and wide applications, ranging from bio (e.g., smart patches for biometric readings), to food/medicine quality control (e.g, smart tags for checking the breaking of cold chain), or to anti-counterfeiting of valuable goods, just to cite few.
Actually, technology is endeavouring to implement the main building blocks for electronic applications in the fast-growing market of flexible electronics expected to expand to 42 B€ by 2021, but available materials are missing the long-term stability and reliability, and device performance can be further improved. From this perspective, it is compulsory to develop new materials, and device architectures able to allow the fully printing of a working electronic system. PEP2D aims at designing a library of inkjet-printed electronic devices (transistors, and all linear and nonlinear components) and circuits (digital logic, memory circuits, amplifiers, transmitters, receivers) enabled by 2DMs based inks, to be eventually obtained through the use of a single tool as the inkjet process, without the need of any additional fabrications steps (i.e., use of resists, etching etc.) and in air (not in glovebox).
Such a goal will be achieved by means of the synergic and complementary activities pursued within the project and based on advanced modelling and design of inkjet-printed devices and circuits, which will lead the activity on the realization and measurements of printed electronic systems.
Max ERC Funding
1 883 868 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym PRO-TOOLKITS
Project Programmable nucleic acid toolkits for cell-free diagnostics and genetically encoded biosensing
Researcher (PI) francesco RICCI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary WHY: The biological complexity of tumours and the large diversity of diagnostic biomarkers call for the development of innovative analytical tools that can detect multiple targets in a sensitive, specific and low-cost way and allow real-time monitoring of disease pathways and therapeutic effects. To provide such transformative tools creative thinking, innovative approach and the exploration of new research avenues that span different disciplines is necessary.
WHAT: The goal of the PRO-TOOLKITS project is to address this need by developing innovative cell-free point of care diagnostic kits and genetically encodable biosensing tools.
HOW: I oriented my independent career as a P.I. towards the design and development of synthetic nucleic acid-based nanodevices and nanomachines. With the help of an ERC Starting Grant I made ground-breaking contributions in the field of nucleic acid Nanotechnology. Motivated by these advancements I propose to challenge my know-how and expertise to explore new research avenues that will open exciting possibilities in biosensing applications. The key, ground-breaking IDEA underlying this project is to take advantage of my expertise and harness the advantageous features of RNA synthetic modules that can translate the expression of proteins in controlled in-vitro cell-free systems and can be also genetically encoded in living organisms and function inside the cells. I will develop rationally designed programmable nucleic acid modules that respond to a wide range of molecular markers and environmental stimuli through innovative nature-inspired mechanisms and that can be orthogonally wired to provide cell-free diagnostic kits and genetically encoded live-cell biosensing tools. The project will provide transformative approaches, methods and tools that will represent a genuine break-through in the fields of in-vitro diagnostics, biosensing and synthetic biology.
Summary
WHY: The biological complexity of tumours and the large diversity of diagnostic biomarkers call for the development of innovative analytical tools that can detect multiple targets in a sensitive, specific and low-cost way and allow real-time monitoring of disease pathways and therapeutic effects. To provide such transformative tools creative thinking, innovative approach and the exploration of new research avenues that span different disciplines is necessary.
WHAT: The goal of the PRO-TOOLKITS project is to address this need by developing innovative cell-free point of care diagnostic kits and genetically encodable biosensing tools.
HOW: I oriented my independent career as a P.I. towards the design and development of synthetic nucleic acid-based nanodevices and nanomachines. With the help of an ERC Starting Grant I made ground-breaking contributions in the field of nucleic acid Nanotechnology. Motivated by these advancements I propose to challenge my know-how and expertise to explore new research avenues that will open exciting possibilities in biosensing applications. The key, ground-breaking IDEA underlying this project is to take advantage of my expertise and harness the advantageous features of RNA synthetic modules that can translate the expression of proteins in controlled in-vitro cell-free systems and can be also genetically encoded in living organisms and function inside the cells. I will develop rationally designed programmable nucleic acid modules that respond to a wide range of molecular markers and environmental stimuli through innovative nature-inspired mechanisms and that can be orthogonally wired to provide cell-free diagnostic kits and genetically encoded live-cell biosensing tools. The project will provide transformative approaches, methods and tools that will represent a genuine break-through in the fields of in-vitro diagnostics, biosensing and synthetic biology.
Max ERC Funding
1 999 375 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym RESCUE
Project REsistive-Switch CompUting bEyond CMOS
Researcher (PI) Daniele IELMINI
Host Institution (HI) POLITECNICO DI MILANO
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Digital computers rely today on CMOS (complementary metal-oxide-semiconductor) technology, which improves its performance every generation thanks to the Moore’s law of downscaling. As CMOS transistor size approaches few nm, alternative logic switches with better scaling capability must be identified to prolong Moore’s law beyond CMOS. Among the emerging switching concepts, resistive switching (RS) devices can change their resistance by electrically-induced redox reactions. RS provides the basis for the resistive memory (ReRAM) technology which is currently investigated as future computer memory and storage technology. The objective of this project is to design, develop and demonstrate a novel computing paradigm based on RS devices. The project will pursue this objective at 3 levels of increasing complexity, namely the device fabrication, the design of new logic gates and the demonstration of computing circuits. RS logic will be finally compared to CMOS and other approaches to identify the strength and the potential applications of RS logic in the computing scenario.
Summary
Digital computers rely today on CMOS (complementary metal-oxide-semiconductor) technology, which improves its performance every generation thanks to the Moore’s law of downscaling. As CMOS transistor size approaches few nm, alternative logic switches with better scaling capability must be identified to prolong Moore’s law beyond CMOS. Among the emerging switching concepts, resistive switching (RS) devices can change their resistance by electrically-induced redox reactions. RS provides the basis for the resistive memory (ReRAM) technology which is currently investigated as future computer memory and storage technology. The objective of this project is to design, develop and demonstrate a novel computing paradigm based on RS devices. The project will pursue this objective at 3 levels of increasing complexity, namely the device fabrication, the design of new logic gates and the demonstration of computing circuits. RS logic will be finally compared to CMOS and other approaches to identify the strength and the potential applications of RS logic in the computing scenario.
Max ERC Funding
1 998 113 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym SEMICOMPLEX
Project Divide and conquer ab initio semiclassical molecular dynamics for spectroscopic calculations of complex systems
Researcher (PI) Michele Ceotto
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Given the continuing revolution in “nano” and “bio” technologies, it is urgent for chemists to be able to carry out reliable quantum dynamics simulations of complex molecular systems. The goal of this project is to fill the gap between theory and experiment and provide the community with a user-friendly computational tool for nuclear spectra (IR, vibro-electronic, etc.) calculations of very complex systems.
Present theoretical methodologies are hampered either by artificial nuclear potential interactions or by local potential perturbation assumptions. The semiclassical molecular dynamics method that I have been pioneering is not affected by these limitations because it is based on ab initio classical trajectories. The nuclear forces can be calculated by any electronic structure software and trajectories can explore the entire potential surface. The remaining challenge is to overcome the exponential scaling of computational power.
I will adopt a divide-and-conquer strategy to beat the curse of dimensionality. Firstly, the ab initio classical molecular dynamics is performed for the entire complex system. Then, partial spectra are calculated by using the semiclassical information derived by the projection of the trajectories onto lower dimensional spaces. Vibrational modes are not artificially decoupled. Finally, the entire spectrum is reconstructed piece by piece. This method allows chemists to have a more reliable spectral interpretation in a wider context up to the nanoscale. With the help of my own previous experience and my collaborations, I will simulate pollutant photodegradation for environmental remediation and the vibro-electronic spectra of carcinogenic molecules adsorbed on TiO2. I will also reproduce the spectroscopic properties of molecular nano-texturing of titania films for outdoor cultural heritage preservation.
A new generation of semiclassical fellows will be educated to put Europe on the leading edge of quantum simulations for spectroscopy.
Summary
Given the continuing revolution in “nano” and “bio” technologies, it is urgent for chemists to be able to carry out reliable quantum dynamics simulations of complex molecular systems. The goal of this project is to fill the gap between theory and experiment and provide the community with a user-friendly computational tool for nuclear spectra (IR, vibro-electronic, etc.) calculations of very complex systems.
Present theoretical methodologies are hampered either by artificial nuclear potential interactions or by local potential perturbation assumptions. The semiclassical molecular dynamics method that I have been pioneering is not affected by these limitations because it is based on ab initio classical trajectories. The nuclear forces can be calculated by any electronic structure software and trajectories can explore the entire potential surface. The remaining challenge is to overcome the exponential scaling of computational power.
I will adopt a divide-and-conquer strategy to beat the curse of dimensionality. Firstly, the ab initio classical molecular dynamics is performed for the entire complex system. Then, partial spectra are calculated by using the semiclassical information derived by the projection of the trajectories onto lower dimensional spaces. Vibrational modes are not artificially decoupled. Finally, the entire spectrum is reconstructed piece by piece. This method allows chemists to have a more reliable spectral interpretation in a wider context up to the nanoscale. With the help of my own previous experience and my collaborations, I will simulate pollutant photodegradation for environmental remediation and the vibro-electronic spectra of carcinogenic molecules adsorbed on TiO2. I will also reproduce the spectroscopic properties of molecular nano-texturing of titania films for outdoor cultural heritage preservation.
A new generation of semiclassical fellows will be educated to put Europe on the leading edge of quantum simulations for spectroscopy.
Max ERC Funding
1 899 973 €
Duration
Start date: 2015-11-01, End date: 2020-10-31