Project acronym AR.C.H.I.VES
Project A comparative history of archives in late medieval and early modern Italy
Researcher (PI) Filippo Luciano Carlo De Vivo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Summary
Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Max ERC Funding
1 107 070 €
Duration
Start date: 2012-02-01, End date: 2016-07-31
Project acronym ARABCOMMAPH
Project Arabic Commentaries on the Hippocratic Aphorisms
Researcher (PI) Peter Ernst Pormann
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Summary
The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Max ERC Funding
1 499 968 €
Duration
Start date: 2012-02-01, End date: 2017-07-31
Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym Arctic Domus
Project Arctic Domestication: Emplacing Human-Animal Relationships in the Circumpolar North
Researcher (PI) David George Anderson
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
Call Details Advanced Grant (AdG), SH2, ERC-2011-ADG_20110406
Summary This 6-year project aims to co-ordinate field research in each of these fields to elaborate a new model of emplaced human-animal relations evoking recent theoretical concerns of the definition of the person, the attribution of agency, and renewed attention to ‘built environments’. The project will work inductively from empirical observations in seven field sites across the circumpolar Arctic from the Russian Federation, to Fennoscandia, to Canada. The circumpolar Arctic originally provided many of the primary thought experiments for classic models of cultural evolution. It has now again become the focus of powerful debates over the balance between the protection of cultural heritage and the development of natural resources to fuel a future for industrial economies. The human-non-human relationships chosen for study cover the full range of theoretical and political discourse within the sciences today from primary encounters in domination to contemporary bio-technical innovations in farming. The team will transcend typical ‘existential’ models of domination between people and animals by describing complex social settings where more than one species interact with the cultural landscape. The team will also challenge existing definitions between wild and tame by instead examining what links these behaviour types together. Further, the team members will examine how domestication was never a sudden, fleeting intuition but rather a process wherein people and domesticates are sometimes closer and sometimes farther from each other. Finally, the research team, working within the above mentioned literatures, will develop a renewed model – a new way of describing – these relationships which does not necessarily rely upon metaphors of domination, competition, individual struggle, origins, or hybridity. The strength of the team, and the principle investigator, is their demonstrated ability to carry out fieldwork in this often difficult to access region.
Summary
This 6-year project aims to co-ordinate field research in each of these fields to elaborate a new model of emplaced human-animal relations evoking recent theoretical concerns of the definition of the person, the attribution of agency, and renewed attention to ‘built environments’. The project will work inductively from empirical observations in seven field sites across the circumpolar Arctic from the Russian Federation, to Fennoscandia, to Canada. The circumpolar Arctic originally provided many of the primary thought experiments for classic models of cultural evolution. It has now again become the focus of powerful debates over the balance between the protection of cultural heritage and the development of natural resources to fuel a future for industrial economies. The human-non-human relationships chosen for study cover the full range of theoretical and political discourse within the sciences today from primary encounters in domination to contemporary bio-technical innovations in farming. The team will transcend typical ‘existential’ models of domination between people and animals by describing complex social settings where more than one species interact with the cultural landscape. The team will also challenge existing definitions between wild and tame by instead examining what links these behaviour types together. Further, the team members will examine how domestication was never a sudden, fleeting intuition but rather a process wherein people and domesticates are sometimes closer and sometimes farther from each other. Finally, the research team, working within the above mentioned literatures, will develop a renewed model – a new way of describing – these relationships which does not necessarily rely upon metaphors of domination, competition, individual struggle, origins, or hybridity. The strength of the team, and the principle investigator, is their demonstrated ability to carry out fieldwork in this often difficult to access region.
Max ERC Funding
2 497 830 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym ARITHMUS
Project Peopling Europe: How data make a people
Researcher (PI) Evelyn Sharon Ruppert
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Consolidator Grant (CoG), SH3, ERC-2013-CoG
Summary Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Summary
Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Max ERC Funding
1 833 649 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ART
Project Aberrant RNA degradation in T-cell leukemia
Researcher (PI) Jan Cools
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Summary
"The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Max ERC Funding
1 998 300 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ASAP
Project Thylakoid membrane in action: acclimation strategies in algae and plants
Researcher (PI) Roberta Croce
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Summary
Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Max ERC Funding
1 696 961 €
Duration
Start date: 2011-12-01, End date: 2017-11-30
Project acronym ASCENT
Project Advanced materials and devices for hybrid spin coherent technologies
Researcher (PI) John Julian Larrarte Morton
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE3, ERC-2011-StG_20101014
Summary The property of spin has been harnessed in an array of revolutionary technologies, from nuclear spins in magnetic resonance imaging to spintronics in magnetic recording media. Nature at its deepest level is quantum mechanical and spins are capable of demonstrating superposition and entanglement, yet such coherent properties have not yet been fully exploited. The exquisite control over materials fabrication and spin control techniques has reached a maturity where spintronics can go beyond purely classical effects and begin to fully exploit these quantum properties. Potential applications range from quantum information processors, including the transmission of quantum information via itinerant electron spins, single microwave photon storage within spin ensembles, and a new generation of sensors exploiting entanglement to yield fundamentally enhanced precision.
The aim of ASCENT is to develop materials and devices in which electron and nuclear spins exhibit long-lived coherent quantum behaviour and interactions which can be harnessed for technological purposes. Specifically, ASCENT will exploit in range of condensed matter systems from molecular materials to silicon-based structures, the possibility of transiently generating and removing electron spins in the vicinity of nuclear spins. The project represents a new and promising direction for the development of coherent interactions between spins in materials, and one which builds upon foundations I have established in my earlier work, often supported by preliminary investigations. Strong interactions with theory throughout this project will provide insights to refine and improve the experiments. In addition to direct applications in quantum technologies, the insights and methodology gained will be fed back into the wider field of spin resonance, including dynamic nuclear polarisation, structural biology and medical imaging.
Summary
The property of spin has been harnessed in an array of revolutionary technologies, from nuclear spins in magnetic resonance imaging to spintronics in magnetic recording media. Nature at its deepest level is quantum mechanical and spins are capable of demonstrating superposition and entanglement, yet such coherent properties have not yet been fully exploited. The exquisite control over materials fabrication and spin control techniques has reached a maturity where spintronics can go beyond purely classical effects and begin to fully exploit these quantum properties. Potential applications range from quantum information processors, including the transmission of quantum information via itinerant electron spins, single microwave photon storage within spin ensembles, and a new generation of sensors exploiting entanglement to yield fundamentally enhanced precision.
The aim of ASCENT is to develop materials and devices in which electron and nuclear spins exhibit long-lived coherent quantum behaviour and interactions which can be harnessed for technological purposes. Specifically, ASCENT will exploit in range of condensed matter systems from molecular materials to silicon-based structures, the possibility of transiently generating and removing electron spins in the vicinity of nuclear spins. The project represents a new and promising direction for the development of coherent interactions between spins in materials, and one which builds upon foundations I have established in my earlier work, often supported by preliminary investigations. Strong interactions with theory throughout this project will provide insights to refine and improve the experiments. In addition to direct applications in quantum technologies, the insights and methodology gained will be fed back into the wider field of spin resonance, including dynamic nuclear polarisation, structural biology and medical imaging.
Max ERC Funding
1 875 550 €
Duration
Start date: 2011-12-01, End date: 2017-06-30
Project acronym assemblyNMR
Project 3D structures of bacterial supramolecular assemblies by solid-state NMR
Researcher (PI) Adam Lange
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Summary
Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Max ERC Funding
1 456 000 €
Duration
Start date: 2014-05-01, End date: 2019-04-30