Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BEAT
Project The functional interaction of EGFR and beta-catenin signalling in colorectal cancer: Genetics, mechanisms, and therapeutic potential.
Researcher (PI) Andrea BERTOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Summary
Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Max ERC Funding
1 793 421 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BONEPHAGY
Project Defining the role of the FGF – autophagy axis in bone physiology
Researcher (PI) Carmine SETTEMBRE
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Summary
Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Max ERC Funding
1 586 430 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym ContraNPM1AML
Project Dissecting to hit the therapeutic targets in nucleophosmin (NPM1)-mutated acute myeloid leukemia
Researcher (PI) Maria Paola MARTELLI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Summary
Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Max ERC Funding
1 883 750 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CSUMECH
Project Cholesterol and Sugar Uptake Mechanisms
Researcher (PI) Bjørn Pedersen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Summary
Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Max ERC Funding
1 499 848 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DE-ORPHAN
Project DEtermination of Orphan Receptor PHysiological Agonists and sigNals
Researcher (PI) David Erik Immanuel Gloriam
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary G protein-coupled receptors make up both the largest membrane protein and drug target families. DE-ORPHAN aims to determine the close functional context; specifically physiological agonists and signaling pathways; and provide the first research tool compounds, of orphan peptide receptors.
Determination of physiological agonists (aka de-orphanization), by high-throughput screening has largely failed. We will introduce a new research strategy: 1) developing highly innovative bioinformatics methods for handpicking of all orphan receptor targets and candidate ligand screening libraries; and 2) employing a screening technique that can measure all signaling pathways simultaneously.
The first potent and selective pharmacological tool compounds will be identified by chemoinformatic design of focused screening libraries. We will establish the ligands’ structure-activity relationships important for biological activity and further optimization towards drugs.
The first potent and selective Gs- and G12/13 protein inhibitors will be designed by structure-based re-optimization from a recent crystal structure of a Gq-inhibitor complex, and applied to determine orphan receptor signaling pathways and ligand pathway-bias. They will open up for efficient dissection of important signaling networks and development of drugs with fewer side effects.
DE-ORPHANs design hypotheses are based on unique computational methods to analyze protein and ligand similarities and are founded on genomic and protein sequences, structural data and ligands. The interdisciplinary research strategy applies multiple ligands acting independently but in concert to provide complementary receptor characterization. The results will allow the research field to advance into studies of receptor functions and exploitation of druggable targets, ligands and mechanisms. Which physiological insights and therapeutic breakthroughs will we witness when these receptors find their place in human pharmacology and medicine?
Summary
G protein-coupled receptors make up both the largest membrane protein and drug target families. DE-ORPHAN aims to determine the close functional context; specifically physiological agonists and signaling pathways; and provide the first research tool compounds, of orphan peptide receptors.
Determination of physiological agonists (aka de-orphanization), by high-throughput screening has largely failed. We will introduce a new research strategy: 1) developing highly innovative bioinformatics methods for handpicking of all orphan receptor targets and candidate ligand screening libraries; and 2) employing a screening technique that can measure all signaling pathways simultaneously.
The first potent and selective pharmacological tool compounds will be identified by chemoinformatic design of focused screening libraries. We will establish the ligands’ structure-activity relationships important for biological activity and further optimization towards drugs.
The first potent and selective Gs- and G12/13 protein inhibitors will be designed by structure-based re-optimization from a recent crystal structure of a Gq-inhibitor complex, and applied to determine orphan receptor signaling pathways and ligand pathway-bias. They will open up for efficient dissection of important signaling networks and development of drugs with fewer side effects.
DE-ORPHANs design hypotheses are based on unique computational methods to analyze protein and ligand similarities and are founded on genomic and protein sequences, structural data and ligands. The interdisciplinary research strategy applies multiple ligands acting independently but in concert to provide complementary receptor characterization. The results will allow the research field to advance into studies of receptor functions and exploitation of druggable targets, ligands and mechanisms. Which physiological insights and therapeutic breakthroughs will we witness when these receptors find their place in human pharmacology and medicine?
Max ERC Funding
1 499 926 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym DENOVOSTEM
Project DE NOVO GENERATION OF SOMATIC STEM CELLS: REGULATION AND MECHANISMS OF CELL PLASTICITY
Researcher (PI) Stefano Piccolo
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Summary
The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Max ERC Funding
2 498 934 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DissectPcG
Project Dissecting the Function of Multiple Polycomb Group Complexes in Establishing Transcriptional Identity
Researcher (PI) Diego PASINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Summary
The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym DPC_REPAIR
Project Mechanism of DNA-protein cross-link repair in S phase
Researcher (PI) Julien Philippe Carlos Duxin
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary DNA-protein cross-links (DPCs) are common DNA lesions caused by endogenous, environmental, and chemotherapeutic agents. Cells are susceptible to these lesions during S phase, as DPCs impede replication fork progression and are likely to induce genomic instability, a cause of cancer and aging. Despite its relevance to human health, the repair of DPCs is poorly understood. Research on DPC repair has mainly involved testing cellular responses to compounds such as formaldehyde, but these agents induce a wide variety of DNA lesions, and conflicting results have been reported. To overcome these obstacles, I have developed the first in vitro system that recapitulates replication-coupled DPC repair. In this system, a plasmid containing a site-specific DPC is replicated in Xenopus egg extracts. Using this approach, I demonstrated that DPC repair requires DNA replication. When a replication fork encounters a DPC, the DPC is degraded into a peptide-adduct, which allows replication bypass by translesion DNA synthesis. Importantly, these experiments identified a novel proteolytic pathway whose activity is regulated by replication.
This in vitro system now provides a powerful means to identify and characterize the different factors that participate in S phase DPC repair. I speculate that for DPC processing to occur, the protein-adduct must first be detected, then marked for degradation and ultimately degraded. Using a series of complementary strategies, which will take advantage of the in vitro system combined with proteome and genome wide approaches, I seek to uncover the different players that participate in each of these events. This project will enable a detailed mechanistic outlook of a complex multi-step reaction that has not been feasible to achieve using existing methodologies. It will also improve our understanding of how DPCs impact genomic stability and the consequences of not repairing these lesions for human health.
Summary
DNA-protein cross-links (DPCs) are common DNA lesions caused by endogenous, environmental, and chemotherapeutic agents. Cells are susceptible to these lesions during S phase, as DPCs impede replication fork progression and are likely to induce genomic instability, a cause of cancer and aging. Despite its relevance to human health, the repair of DPCs is poorly understood. Research on DPC repair has mainly involved testing cellular responses to compounds such as formaldehyde, but these agents induce a wide variety of DNA lesions, and conflicting results have been reported. To overcome these obstacles, I have developed the first in vitro system that recapitulates replication-coupled DPC repair. In this system, a plasmid containing a site-specific DPC is replicated in Xenopus egg extracts. Using this approach, I demonstrated that DPC repair requires DNA replication. When a replication fork encounters a DPC, the DPC is degraded into a peptide-adduct, which allows replication bypass by translesion DNA synthesis. Importantly, these experiments identified a novel proteolytic pathway whose activity is regulated by replication.
This in vitro system now provides a powerful means to identify and characterize the different factors that participate in S phase DPC repair. I speculate that for DPC processing to occur, the protein-adduct must first be detected, then marked for degradation and ultimately degraded. Using a series of complementary strategies, which will take advantage of the in vitro system combined with proteome and genome wide approaches, I seek to uncover the different players that participate in each of these events. This project will enable a detailed mechanistic outlook of a complex multi-step reaction that has not been feasible to achieve using existing methodologies. It will also improve our understanding of how DPCs impact genomic stability and the consequences of not repairing these lesions for human health.
Max ERC Funding
1 498 856 €
Duration
Start date: 2017-01-01, End date: 2021-12-31