Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym AFTERTHEGOLDRUSH
Project Addressing global sustainability challenges by changing perceptions in catalyst design
Researcher (PI) Graham John Hutchings
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Summary
One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Max ERC Funding
2 279 785 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ATMINDDR
Project ATMINistrating ATM signalling: exploring the significance of ATM regulation by ATMIN
Researcher (PI) Axel Behrens
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Summary
ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Max ERC Funding
1 499 881 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym CANCERINNOVATION
Project Using novel methodologies to target and image cancer invasion and therapeutic resistance
Researcher (PI) Margaret Frame
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary We aim to develop and apply a suite of new technologies in a novel cancer discovery platform that will link high-definition cancer biology, via state-of-the-art disease imaging and pathway modelling, with development of novel interrogative and therapeutic interventions to test in models of cancer that closely resemble human disease. The work will lead to a new understanding of cancer invasion, how to treat advanced disease in the metastatic niche, how to monitor therapeutic responses and the compensatory mechanisms that cause acquired resistance. Platform development will be based on combined, cross-informing technologies that will enable us to predict optimal ‘maintenance therapies’ for metastatic disease by targeting cancer evolution and spread through combination therapy. A key strand of the platform is the development of quantitative multi-modal imaging in vivo by use of optical window technology to inform detailed understanding of disease and drug mechanisms and predictive capability of pathway biomarkers. Innovative methodologies are urgently needed to address declining approval rates of novel medicines and the unmet clinical needs of treating cancer patients in the advanced disease setting, where tumour spread and survival generally continues unchecked by current therapies. This work will be largely pre-clinical, but will always be mindful of the clinical problem in managing late stage human disease through rationale design of combination therapies with companion diagnostic tests. The cancer survival statistics will be changed if we can curb continuing spread of aggressive, metastatic disease and resistance to therapy by taking smarter combined approaches that make best use of emerging technologies in an innovative way, particularly where they are more predictive of clinical efficacy.
Summary
We aim to develop and apply a suite of new technologies in a novel cancer discovery platform that will link high-definition cancer biology, via state-of-the-art disease imaging and pathway modelling, with development of novel interrogative and therapeutic interventions to test in models of cancer that closely resemble human disease. The work will lead to a new understanding of cancer invasion, how to treat advanced disease in the metastatic niche, how to monitor therapeutic responses and the compensatory mechanisms that cause acquired resistance. Platform development will be based on combined, cross-informing technologies that will enable us to predict optimal ‘maintenance therapies’ for metastatic disease by targeting cancer evolution and spread through combination therapy. A key strand of the platform is the development of quantitative multi-modal imaging in vivo by use of optical window technology to inform detailed understanding of disease and drug mechanisms and predictive capability of pathway biomarkers. Innovative methodologies are urgently needed to address declining approval rates of novel medicines and the unmet clinical needs of treating cancer patients in the advanced disease setting, where tumour spread and survival generally continues unchecked by current therapies. This work will be largely pre-clinical, but will always be mindful of the clinical problem in managing late stage human disease through rationale design of combination therapies with companion diagnostic tests. The cancer survival statistics will be changed if we can curb continuing spread of aggressive, metastatic disease and resistance to therapy by taking smarter combined approaches that make best use of emerging technologies in an innovative way, particularly where they are more predictive of clinical efficacy.
Max ERC Funding
2 499 000 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym CAPRI
Project Chemical and photochemical dynamics of reactions in solution
Researcher (PI) Andrew John Orr-Ewing
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary Ultrafast laser methods will be employed to examine the dynamics of chemical and photochemical reactions in liquid solutions. By contrasting the solution phase dynamics with those observed for isolated collisions in the gas phase, the fundamental role of solvent on chemical pathways will be explored at a molecular level. The experimental studies will be complemented by computational simulations that explicitly include treatment of the effects of solvent on reaction energy pathways and reactant and product motions.
The research addresses a major challenge in Chemistry to understand the role of solvent on the mechanisms of chemical reactions. Questions that will be examined include how the solvent modifies reaction barriers and other regions of the reaction potential energy surface (PESs), alters the couplings between PESs, most importantly at conical intersections between electronic states, influences and constrains the dynamical stereochemistry of passage through transition states, and dissipates excess product energy.
The experimental strategy will be to obtain absorption spectra of transient species with lifetimes of ~100 fs – 1000 ps using broad bandwidth light sources in the infrared, visible and ultraviolet regions. Time-evolutions of such spectra reveal the formation and decay of short-lived species that might be highly reactive radicals or internally (vibrationally and electronically) excited molecules. The transient species decay by reaction or energy loss to the solvent. Statistical mechanical theories of reactions in solution treat such processes using linear response theory, but the experimental data will challenge this paradigm by seeking evidence for breakdown of the linear response interaction of solvent and solute on short timescales because of microscopic chemical dynamics that perturb the solvent structure. The work will build on our pioneering experiments at the Rutherford Appleton Laboratory that prove the feasilbility of the methods.
Summary
Ultrafast laser methods will be employed to examine the dynamics of chemical and photochemical reactions in liquid solutions. By contrasting the solution phase dynamics with those observed for isolated collisions in the gas phase, the fundamental role of solvent on chemical pathways will be explored at a molecular level. The experimental studies will be complemented by computational simulations that explicitly include treatment of the effects of solvent on reaction energy pathways and reactant and product motions.
The research addresses a major challenge in Chemistry to understand the role of solvent on the mechanisms of chemical reactions. Questions that will be examined include how the solvent modifies reaction barriers and other regions of the reaction potential energy surface (PESs), alters the couplings between PESs, most importantly at conical intersections between electronic states, influences and constrains the dynamical stereochemistry of passage through transition states, and dissipates excess product energy.
The experimental strategy will be to obtain absorption spectra of transient species with lifetimes of ~100 fs – 1000 ps using broad bandwidth light sources in the infrared, visible and ultraviolet regions. Time-evolutions of such spectra reveal the formation and decay of short-lived species that might be highly reactive radicals or internally (vibrationally and electronically) excited molecules. The transient species decay by reaction or energy loss to the solvent. Statistical mechanical theories of reactions in solution treat such processes using linear response theory, but the experimental data will challenge this paradigm by seeking evidence for breakdown of the linear response interaction of solvent and solute on short timescales because of microscopic chemical dynamics that perturb the solvent structure. The work will build on our pioneering experiments at the Rutherford Appleton Laboratory that prove the feasilbility of the methods.
Max ERC Funding
2 666 684 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CEIDNFSTTAIS
Project Controlling excitability in developing neurons: from synapses to the axon initial segment
Researcher (PI) Juan Burrone
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Summary
A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym COHESIN CONTROL
Project The mechanism by which cohesin controls gene expression
Researcher (PI) Kim Ashley Nasmyth
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary How cells retain, lose, and regain developmental plasticity is poorly understood due to ignorance of the molecular mechanisms regulating gene expression. Each gene is regulated by a unique set of factors and as a consequence the trans-acting factors and cis-acting chromatin modification states regulating a given gene are extremely rare. Transcription is affected by events taking place many thousands of base pairs away from the start, a property enabling developmental and evolutionary plasticity, presumably made possible by DNA looping or translocation of factors along chromatin. Most factors regulating a given gene function at many other genes, complicating interpretation of the consequences of altering the activity of such factors. It is difficult to exclude the possibility that phenotypes are knock-on effects. This could be surmounted if it were possible to observe individual genes in real time in three-dimensional space and to analyse the immediate consequences of altering the activity of regulatory factors. Of these, those capable of inter-connecting DNAs or of translocating large distances along chromatin are of interest. Cohesin is such a factor, composed of three core subunits, a pair of Smc proteins and a kleisin subunit, that interact with each other to form a huge tripartite ring, within which it is thought chromatin fibres are entrapped. In proliferating cells, cohesin’s primary function is to connect sister chromatids during DNA replication until the onset of anaphase, possibly by virtue of co-entrapment within a single ring. However, cohesin is present in most quiescent cells and it is becoming clear that it also regulates gene expression and recombination. This proposal has two goals: To image gene expression on polytene chromosomes and to investigate cohesin’s role during ecdysone-induced transcription. The advantage of this system is that we can use micro-injection of TEV protease to inactivate cohesin. A second goal is to develop the TEV system to
Summary
How cells retain, lose, and regain developmental plasticity is poorly understood due to ignorance of the molecular mechanisms regulating gene expression. Each gene is regulated by a unique set of factors and as a consequence the trans-acting factors and cis-acting chromatin modification states regulating a given gene are extremely rare. Transcription is affected by events taking place many thousands of base pairs away from the start, a property enabling developmental and evolutionary plasticity, presumably made possible by DNA looping or translocation of factors along chromatin. Most factors regulating a given gene function at many other genes, complicating interpretation of the consequences of altering the activity of such factors. It is difficult to exclude the possibility that phenotypes are knock-on effects. This could be surmounted if it were possible to observe individual genes in real time in three-dimensional space and to analyse the immediate consequences of altering the activity of regulatory factors. Of these, those capable of inter-connecting DNAs or of translocating large distances along chromatin are of interest. Cohesin is such a factor, composed of three core subunits, a pair of Smc proteins and a kleisin subunit, that interact with each other to form a huge tripartite ring, within which it is thought chromatin fibres are entrapped. In proliferating cells, cohesin’s primary function is to connect sister chromatids during DNA replication until the onset of anaphase, possibly by virtue of co-entrapment within a single ring. However, cohesin is present in most quiescent cells and it is becoming clear that it also regulates gene expression and recombination. This proposal has two goals: To image gene expression on polytene chromosomes and to investigate cohesin’s role during ecdysone-induced transcription. The advantage of this system is that we can use micro-injection of TEV protease to inactivate cohesin. A second goal is to develop the TEV system to
Max ERC Funding
2 421 212 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym CORTICAL ASSEMBLY
Project Excitatory and inhibitory cell assemblies
in the cerebral cortex
Researcher (PI) Oscar Marin Parra
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary The neural assembly underlying the formation of functional networks in the cerebral cortex is conceivably the most complex biological system that exists. Much of this complexity arises during development through the interaction of dozens of different neuronal populations, which belong to two general classes: excitatory glutamatergic pyramidal cells and inhibitory gamma-aminobutyric containing (GABAergic) interneurons. Perhaps the most fascinating aspect of the assembly of cortical circuits is that pyramidal cells and interneurons are generated in distant germinal zones. Pyramidal cells are born locally from progenitors located in the cortical anlage, while interneurons derive from progenitors in the embryonic subpallium. Much progress has been made recently in understanding the molecular mechanisms that regulate the migration of interneurons towards the cortex, but how interneurons find their appropriate partners to build cortical networks with balanced excitation and inhibition remains an enigma.
The general goal of this project is to identify the mechanisms controlling the precise allocation of different classes of interneurons into specific layers of the cortex, where they assemble into neural circuits. We also aim to determine how the allocation of interneurons into specific cortical layers influences their function. This project is now possible due to the unique combination of our detailed know-how on the early development of cortical interneurons, including a variety of genetically modified mice available to us, and the application of new technologies to specifically target synchronically generated populations of interneurons. Our multidisciplinary approach, combining mouse genetics, in vivo functional genomics and electrophysiological methodologies represents a technological breakthrough that should accelerate our understanding of the general principles guiding the assembly of neuronal circuits in the cerebral cortex.
Summary
The neural assembly underlying the formation of functional networks in the cerebral cortex is conceivably the most complex biological system that exists. Much of this complexity arises during development through the interaction of dozens of different neuronal populations, which belong to two general classes: excitatory glutamatergic pyramidal cells and inhibitory gamma-aminobutyric containing (GABAergic) interneurons. Perhaps the most fascinating aspect of the assembly of cortical circuits is that pyramidal cells and interneurons are generated in distant germinal zones. Pyramidal cells are born locally from progenitors located in the cortical anlage, while interneurons derive from progenitors in the embryonic subpallium. Much progress has been made recently in understanding the molecular mechanisms that regulate the migration of interneurons towards the cortex, but how interneurons find their appropriate partners to build cortical networks with balanced excitation and inhibition remains an enigma.
The general goal of this project is to identify the mechanisms controlling the precise allocation of different classes of interneurons into specific layers of the cortex, where they assemble into neural circuits. We also aim to determine how the allocation of interneurons into specific cortical layers influences their function. This project is now possible due to the unique combination of our detailed know-how on the early development of cortical interneurons, including a variety of genetically modified mice available to us, and the application of new technologies to specifically target synchronically generated populations of interneurons. Our multidisciplinary approach, combining mouse genetics, in vivo functional genomics and electrophysiological methodologies represents a technological breakthrough that should accelerate our understanding of the general principles guiding the assembly of neuronal circuits in the cerebral cortex.
Max ERC Funding
2 493 481 €
Duration
Start date: 2012-04-01, End date: 2017-09-30
Project acronym COSIMO
Project COVALENT SINGLE-MOLECULE CHEMISTRY OF THE CELL
Researcher (PI) John Hagan Pryce Bayley
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS9, ERC-2011-ADG_20110310
Summary "A label-free single-molecule technology developed the PI's laboratory will be exploited to elucidate covalent chemistry of relevance to the cell. The approach uses an engineered protein pore that passes a non-perturbing current carried by aqueous ions. Covalent bond making and breaking events within this nanoreactor are registered as step changes in the ionic current that reveal the kinetics of each reaction step. No perturbing reagents, such as fluorophores, are required. Single-molecule chemistry provides insights that are not forthcoming from ensemble experiments. For example, all the intermediates in a reaction are revealed in the correct sequence; a fast step that follows a slow step is readily observed; branched pathways can be dissected. We have demonstrated the feasibility of the nanoreactor approach and now we will build on its considerable potential by deciphering and quantifying three aspects of cellular chemistry that encompass basic science and biotechnology: 1. various reactions that occur in cells and tissues (e.g. nitrosothiol second messenger chemistry); 2. the chemistry of reagents for use in cell biology (e.g. the site-specific attachment of fluorophores to proteins); 3. the development of single-molecule sensors for cells and tissues (e.g. sniffer pipets)."
Summary
"A label-free single-molecule technology developed the PI's laboratory will be exploited to elucidate covalent chemistry of relevance to the cell. The approach uses an engineered protein pore that passes a non-perturbing current carried by aqueous ions. Covalent bond making and breaking events within this nanoreactor are registered as step changes in the ionic current that reveal the kinetics of each reaction step. No perturbing reagents, such as fluorophores, are required. Single-molecule chemistry provides insights that are not forthcoming from ensemble experiments. For example, all the intermediates in a reaction are revealed in the correct sequence; a fast step that follows a slow step is readily observed; branched pathways can be dissected. We have demonstrated the feasibility of the nanoreactor approach and now we will build on its considerable potential by deciphering and quantifying three aspects of cellular chemistry that encompass basic science and biotechnology: 1. various reactions that occur in cells and tissues (e.g. nitrosothiol second messenger chemistry); 2. the chemistry of reagents for use in cell biology (e.g. the site-specific attachment of fluorophores to proteins); 3. the development of single-molecule sensors for cells and tissues (e.g. sniffer pipets)."
Max ERC Funding
2 499 999 €
Duration
Start date: 2012-04-01, End date: 2017-03-31