Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym A-DIET
Project Metabolomics based biomarkers of dietary intake- new tools for nutrition research
Researcher (PI) Lorraine Brennan
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Summary
In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Max ERC Funding
1 995 548 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym ArtHep
Project Hepatocytes-Like Microreactors for Liver Tissue Engineering
Researcher (PI) Brigitte STADLER
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Summary
The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Max ERC Funding
1 992 289 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BIOELECPRO
Project Frontier Research on the Dielectric Properties of Biological Tissue
Researcher (PI) Martin James O'Halloran
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Summary
The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Max ERC Funding
1 499 329 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BugTheDrug
Project Predicting the effects of gut microbiota and diet on an individual’s drug response and safety
Researcher (PI) Ines THIELE
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Summary
Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Max ERC Funding
1 687 458 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym C-MORPH
Project Noninvasive cell specific morphometry in neuroinflammation and degeneration
Researcher (PI) Henrik LUNDELL
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Summary
Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Max ERC Funding
1 498 811 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym CHILDGROWTH2CANCER
Project Childhood body size, growth and pubertal timing and the risk of cancer in adulthood
Researcher (PI) Jennifer Lyn Baker
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Summary
The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Max ERC Funding
1 199 998 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CHILIC
Project Child health intervention interactions in low-income countries
Researcher (PI) Christine Benn
Host Institution (HI) STATENS SERUM INSTITUT
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Summary
Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Max ERC Funding
1 686 043 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CHIPS
Project Effects of Prenatal Exposure to Acrylamide on Health: Prospective Biomarker-Based Studies
Researcher (PI) Marie Pedersen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Background: Acrylamide is a chemical formed in many commonly consumed foods and beverages. It is neurotoxic, crosses the placenta and has been associated with restriction of fetal growth in humans. In animals, acrylamide causes heritable mutations, tumors, developmental toxicity, reduced fertility and impaired growth. Therefore, the discovery of acrylamide in food in 2002 raised concern about human health effects worldwide. Still, epidemiological studies are limited and effects on health of prenatal exposure have never been evaluated.
Research gaps: Epidemiological studies have mostly addressed exposure during adulthood, focused on cancer risk in adults, and relied on questionnaires entailing a high degree of exposure misclassification. Biomarker studies on prenatal exposure to acrylamide from diet are critically needed to improve exposure assessment and to determine whether acrylamide leads to major diseases later in life.
Own results: I have first authored a prospective European study showing that prenatal exposure to acrylamide, estimated by measuring hemoglobin adducts in cord blood, was associated with fetal growth restriction, for the first time.
Objectives: To determine the effects of prenatal exposure to acrylamide alone and in combination with other potentially toxic adduct-forming exposures on the health of children and young adults.
Methods: Both well-established and innovative biomarker methods will be used for characterization of prenatal exposure to acrylamide and related toxicants in blood from pregnant women and their offspring in prospective cohort studies with long-term follow-up. Risk of neurological disorders, impaired cognition, disturbed reproductive function and metabolic outcomes such as obesity and diabetes will be evaluated.
Perspectives: CHIPS project will provide a better understanding of the impact of prenatal exposure to acrylamide from diet on human health urgently needed for targeted strategies for the protection of the health.
Summary
Background: Acrylamide is a chemical formed in many commonly consumed foods and beverages. It is neurotoxic, crosses the placenta and has been associated with restriction of fetal growth in humans. In animals, acrylamide causes heritable mutations, tumors, developmental toxicity, reduced fertility and impaired growth. Therefore, the discovery of acrylamide in food in 2002 raised concern about human health effects worldwide. Still, epidemiological studies are limited and effects on health of prenatal exposure have never been evaluated.
Research gaps: Epidemiological studies have mostly addressed exposure during adulthood, focused on cancer risk in adults, and relied on questionnaires entailing a high degree of exposure misclassification. Biomarker studies on prenatal exposure to acrylamide from diet are critically needed to improve exposure assessment and to determine whether acrylamide leads to major diseases later in life.
Own results: I have first authored a prospective European study showing that prenatal exposure to acrylamide, estimated by measuring hemoglobin adducts in cord blood, was associated with fetal growth restriction, for the first time.
Objectives: To determine the effects of prenatal exposure to acrylamide alone and in combination with other potentially toxic adduct-forming exposures on the health of children and young adults.
Methods: Both well-established and innovative biomarker methods will be used for characterization of prenatal exposure to acrylamide and related toxicants in blood from pregnant women and their offspring in prospective cohort studies with long-term follow-up. Risk of neurological disorders, impaired cognition, disturbed reproductive function and metabolic outcomes such as obesity and diabetes will be evaluated.
Perspectives: CHIPS project will provide a better understanding of the impact of prenatal exposure to acrylamide from diet on human health urgently needed for targeted strategies for the protection of the health.
Max ERC Funding
1 499 531 €
Duration
Start date: 2018-07-01, End date: 2023-06-30