Project acronym AArteMIS
Project Aneurysmal Arterial Mechanics: Into the Structure
Researcher (PI) Pierre Joseph Badel
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Summary
The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Max ERC Funding
1 499 783 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym AEROFLEX
Project AEROelastic instabilities and control of FLEXible Structures
Researcher (PI) Olivier Pierre MARQUET
Host Institution (HI) OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Summary
Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Max ERC Funding
1 377 290 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym BIOLOCHANICS
Project Localization in biomechanics and mechanobiology of aneurysms: Towards personalized medicine
Researcher (PI) Stéphane Henri Anatole Avril
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Rupture of Aortic Aneurysms (AA), which kills more than 30 000 persons every year in Europe and the USA, is a complex phenomenon that occurs when the wall stress exceeds the local strength of the aorta due to degraded properties of the tissue. The state of the art in AA biomechanics and mechanobiology reveals that major scientific challenges still have to be addressed to permit patient-specific computational predictions of AA rupture and enable localized repair of the structure with targeted pharmacologic treatment. A first challenge relates to ensuring an objective prediction of localized mechanisms preceding rupture. A second challenge relates to modelling the patient-specific evolutions of material properties leading to the localized mechanisms preceding rupture. Addressing these challenges is the aim of the BIOLOCHANICS proposal. We will take into account internal length-scales controlling localization mechanisms preceding AA rupture by implementing an enriched, also named nonlocal, continuum damage theory in the computational models of AA biomechanics and mechanobiology. We will also develop very advanced experiments, based on full-field optical measurements, aimed at characterizing localization mechanisms occurring in aortic tissues and at identifying local distributions of material properties at different stages of AA progression. A first in vivo application will be performed on genetic and pharmacological models of mice and rat AA. Eventually, a retrospective clinical study involving more than 100 patients at the Saint-Etienne University hospital will permit calibrating estimations of AA rupture risk thanks to our novel approaches and infuse them into future clinical practice. Through the achievements of BIOLOCHANICS, nonlocal mechanics will be possibly extended to other soft tissues for applications in orthopaedics, oncology, sport biomechanics, interventional surgery, human safety, cell biology, etc.
Summary
Rupture of Aortic Aneurysms (AA), which kills more than 30 000 persons every year in Europe and the USA, is a complex phenomenon that occurs when the wall stress exceeds the local strength of the aorta due to degraded properties of the tissue. The state of the art in AA biomechanics and mechanobiology reveals that major scientific challenges still have to be addressed to permit patient-specific computational predictions of AA rupture and enable localized repair of the structure with targeted pharmacologic treatment. A first challenge relates to ensuring an objective prediction of localized mechanisms preceding rupture. A second challenge relates to modelling the patient-specific evolutions of material properties leading to the localized mechanisms preceding rupture. Addressing these challenges is the aim of the BIOLOCHANICS proposal. We will take into account internal length-scales controlling localization mechanisms preceding AA rupture by implementing an enriched, also named nonlocal, continuum damage theory in the computational models of AA biomechanics and mechanobiology. We will also develop very advanced experiments, based on full-field optical measurements, aimed at characterizing localization mechanisms occurring in aortic tissues and at identifying local distributions of material properties at different stages of AA progression. A first in vivo application will be performed on genetic and pharmacological models of mice and rat AA. Eventually, a retrospective clinical study involving more than 100 patients at the Saint-Etienne University hospital will permit calibrating estimations of AA rupture risk thanks to our novel approaches and infuse them into future clinical practice. Through the achievements of BIOLOCHANICS, nonlocal mechanics will be possibly extended to other soft tissues for applications in orthopaedics, oncology, sport biomechanics, interventional surgery, human safety, cell biology, etc.
Max ERC Funding
1 999 396 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BRAIN MICRO SNOOPER
Project A mimetic implant for low perturbation, stable stimulation and recording of neural units inside the brain.
Researcher (PI) Gaelle Offranc piret
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Summary
Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Max ERC Funding
1 499 850 €
Duration
Start date: 2015-08-01, End date: 2021-07-31
Project acronym Econ_Prejudice
Project The Economics of Ethnic Prejudice
Researcher (PI) Ekaterina Zhuravskaya
Host Institution (HI) ECOLE D'ECONOMIE DE PARIS
Call Details Consolidator Grant (CoG), SH1, ERC-2014-CoG
Summary Why do ethnic differences matter in some cases and not in others? What determines the strength of ethnic self-identification? This question is central to understanding the consequences of ethnic divisions for conflict and economic development and their policy implications but it was neglected by economic research until now. This project aims at filling this gap by endogenizing ethnic identity. We study how the salience of ethnic differences depends on economic and social context and policies of nation building. Our research program is organized around 3 pillars focusing on social, economic, and political determinants of ethnic tensions, respectively. The first pillar tests social psychology theories of ethnic identity using natural experiments, generated by forced mass movements of ethnic groups in Eastern Europe and from Eastern Europe to Central Asia as a result of WWII. The second pillar studies how market interactions between representatives of different ethnic groups and, in particular, ethnic occupational segregation affects ethnic tensions in the context of historical anti-Jewish violence following agro-climatic income shocks in the 19th and 20th century Eastern Europe. The third pillar focuses on the effects of political manipulation on ethnic conflict in the context of the historical experiment of nation building in Central Asia. It studies how political empowerment of a certain ethnic elite in a multi-ethnic traditional society coupled with a set of nation-building policies affects ethnic conflicts depending on the pre-existing ethnic mix and the distribution of political power among ethnic elites. This research will shed light on factors that make ethnic diversity important for conflict and economic development.
Summary
Why do ethnic differences matter in some cases and not in others? What determines the strength of ethnic self-identification? This question is central to understanding the consequences of ethnic divisions for conflict and economic development and their policy implications but it was neglected by economic research until now. This project aims at filling this gap by endogenizing ethnic identity. We study how the salience of ethnic differences depends on economic and social context and policies of nation building. Our research program is organized around 3 pillars focusing on social, economic, and political determinants of ethnic tensions, respectively. The first pillar tests social psychology theories of ethnic identity using natural experiments, generated by forced mass movements of ethnic groups in Eastern Europe and from Eastern Europe to Central Asia as a result of WWII. The second pillar studies how market interactions between representatives of different ethnic groups and, in particular, ethnic occupational segregation affects ethnic tensions in the context of historical anti-Jewish violence following agro-climatic income shocks in the 19th and 20th century Eastern Europe. The third pillar focuses on the effects of political manipulation on ethnic conflict in the context of the historical experiment of nation building in Central Asia. It studies how political empowerment of a certain ethnic elite in a multi-ethnic traditional society coupled with a set of nation-building policies affects ethnic conflicts depending on the pre-existing ethnic mix and the distribution of political power among ethnic elites. This research will shed light on factors that make ethnic diversity important for conflict and economic development.
Max ERC Funding
1 598 308 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym FireBar-Concept
Project MULTI-CONCEPTUAL DESIGN OF FIRE BARRIER: A SYSTEMIC APPROACH
Researcher (PI) Serge Bourbigot
Host Institution (HI) UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE - LILLE I
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread.
The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario). This fire barrier can be developed in several ways according to the chemical nature of the material and/or of its formulation:
- Heat barrier formed by inherently flame retarded materials (e.g. mineral fibers, ceramic …) and exhibiting low thermal conductivity (note the assembly of those materials can also provide low thermal conductivity controlling porosity and its distribution)
- Evolution of reactive radicals poisoning the flame and forming a protective ‘umbrella’ avoiding the combustion of the material
- Additives promoting charring of the materials and forming an expanding carbonaceous protective coating or barrier (intumescence)
- Additives forming a physical barrier limiting mass transfer of the degradation products to the flame
The FireBar-Concept project is multidisciplinary and it requires expertise in material science, chemical engineering, chemistry, thermal science and physics. The approach is to make 5 actions linked together by transverse developments (3) according to this scheme: (i) fundamentals of fire barrier, (ii) multi-material and combination of concepts, (iii) modeling and numerical simulation, (iv) design and development of experimental protocols and (v) optimization of the systems.
Summary
The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread.
The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario). This fire barrier can be developed in several ways according to the chemical nature of the material and/or of its formulation:
- Heat barrier formed by inherently flame retarded materials (e.g. mineral fibers, ceramic …) and exhibiting low thermal conductivity (note the assembly of those materials can also provide low thermal conductivity controlling porosity and its distribution)
- Evolution of reactive radicals poisoning the flame and forming a protective ‘umbrella’ avoiding the combustion of the material
- Additives promoting charring of the materials and forming an expanding carbonaceous protective coating or barrier (intumescence)
- Additives forming a physical barrier limiting mass transfer of the degradation products to the flame
The FireBar-Concept project is multidisciplinary and it requires expertise in material science, chemical engineering, chemistry, thermal science and physics. The approach is to make 5 actions linked together by transverse developments (3) according to this scheme: (i) fundamentals of fire barrier, (ii) multi-material and combination of concepts, (iii) modeling and numerical simulation, (iv) design and development of experimental protocols and (v) optimization of the systems.
Max ERC Funding
2 429 988 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym INTICE
Project Pathways to Intrinsically Icephobic Surfaces
Researcher (PI) Dimosthenis Poulikakos
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary Icing of surfaces is common in nature and technology, affecting everyday life and often causing catastrophic events. Despite progress in recent years in the area of hydrophobicity, engineered surfaces that can be employed in applications based on their intrinsic icephobicity, going beyond classical additional chemical coatings or heating treatments, are not a reality. Understanding and counteracting surface icing brings with it significant scientific challenges, which form an intersection of nucleation thermodynamics, interfacial thermofluidics and surface nanoengineering/science. This project will investigate important mesoscale phenomena (a term used here to summarily describe phenomena manifesting themselves in the spatial range from the order of a nanometer to a hundred microns), which affect the behavior of water on surfaces with respect to icing. With the resulting, unifying knowledge base, the aim is to identify pathways for the design and fabrication of a new class of intrinsically icephobic surfaces, based on their a-priori engineered composition and texture. Our aim is to identify anti-nucleation and anti-wetting phenomena, leading to surfaces having long ice nucleation time scales, low water contact and retention, and low ice adhesion. The effects of surface texture curvature on ice nucleation, local liquid confinement on freezing point depression, and mesoscale texture features on interfacial thermofluidics, have intertwined and sometimes counteracting impacts on surface icing behavior, which we aim at unraveling, to determine pathways to high performance surfaces. Connected to all this is the employment of advanced surface texture fabrication and methods to perform the necessary experiments, lending consideration to the development of such surfaces for future applications. Beyond icephobicity, this research has clear implications to the characterization of mesoscale phase change phenomena, for multiphase heat and mass transfer processes and devices.
Summary
Icing of surfaces is common in nature and technology, affecting everyday life and often causing catastrophic events. Despite progress in recent years in the area of hydrophobicity, engineered surfaces that can be employed in applications based on their intrinsic icephobicity, going beyond classical additional chemical coatings or heating treatments, are not a reality. Understanding and counteracting surface icing brings with it significant scientific challenges, which form an intersection of nucleation thermodynamics, interfacial thermofluidics and surface nanoengineering/science. This project will investigate important mesoscale phenomena (a term used here to summarily describe phenomena manifesting themselves in the spatial range from the order of a nanometer to a hundred microns), which affect the behavior of water on surfaces with respect to icing. With the resulting, unifying knowledge base, the aim is to identify pathways for the design and fabrication of a new class of intrinsically icephobic surfaces, based on their a-priori engineered composition and texture. Our aim is to identify anti-nucleation and anti-wetting phenomena, leading to surfaces having long ice nucleation time scales, low water contact and retention, and low ice adhesion. The effects of surface texture curvature on ice nucleation, local liquid confinement on freezing point depression, and mesoscale texture features on interfacial thermofluidics, have intertwined and sometimes counteracting impacts on surface icing behavior, which we aim at unraveling, to determine pathways to high performance surfaces. Connected to all this is the employment of advanced surface texture fabrication and methods to perform the necessary experiments, lending consideration to the development of such surfaces for future applications. Beyond icephobicity, this research has clear implications to the characterization of mesoscale phase change phenomena, for multiphase heat and mass transfer processes and devices.
Max ERC Funding
2 498 043 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym ISECO
Project Information services: competition and externalities
Researcher (PI) Bruno Jullien
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Advanced Grant (AdG), SH1, ERC-2014-ADG
Summary This application aims at fostering our knowledge of the economics of information services by studying the strategic interactions between agents involved in the production and exchange of information services. In this context, externalities play a key role explored by this proposal. Their increasing prevalence in information services can be traced to three features:
- Many information services involve one-sided or two-sided network externalities.
- Information is a public good and the production and exchange of information between two parties may affect other parties in a positive or negative manner.
- Information services and physical infrastructures are complements.
Externalities arise in the two layers of the information society, the content level and the physical infrastructure. The proposal is then organized around four parts:
1. Background theory: two-sided markets, network dynamics, contractual externalities
2. Virtual layer: recommendation systems, privacy, transaction costs
3. Physical layer: pricing , investment
4. Competition policy for two-sided markets
The first part consists of the development of relevant theory with original and novel methods including for instance global games, coordination games and recent contract theory. The second part studies specific issues in information services such as the design of search engines and the right to privacy. It also includes empirical investigation of on-line transaction costs using proprietary data of transactions on e-commerce platforms. The third part is concerned with the infrastructure. It studies net-neutrality and the prices of data from the perspective of price theory, accounting for the gratuity of some services. It will also develop original dynamic investment models to understand the role of the complementarity between infrastructure and service innovation and the role of legacy. The last part will develop tools for competition policy makers.
Summary
This application aims at fostering our knowledge of the economics of information services by studying the strategic interactions between agents involved in the production and exchange of information services. In this context, externalities play a key role explored by this proposal. Their increasing prevalence in information services can be traced to three features:
- Many information services involve one-sided or two-sided network externalities.
- Information is a public good and the production and exchange of information between two parties may affect other parties in a positive or negative manner.
- Information services and physical infrastructures are complements.
Externalities arise in the two layers of the information society, the content level and the physical infrastructure. The proposal is then organized around four parts:
1. Background theory: two-sided markets, network dynamics, contractual externalities
2. Virtual layer: recommendation systems, privacy, transaction costs
3. Physical layer: pricing , investment
4. Competition policy for two-sided markets
The first part consists of the development of relevant theory with original and novel methods including for instance global games, coordination games and recent contract theory. The second part studies specific issues in information services such as the design of search engines and the right to privacy. It also includes empirical investigation of on-line transaction costs using proprietary data of transactions on e-commerce platforms. The third part is concerned with the infrastructure. It studies net-neutrality and the prices of data from the perspective of price theory, accounting for the gratuity of some services. It will also develop original dynamic investment models to understand the role of the complementarity between infrastructure and service innovation and the role of legacy. The last part will develop tools for competition policy makers.
Max ERC Funding
1 815 938 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym MaGic
Project The Materials Genome in Action
Researcher (PI) Berend Smit
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary It is now possible to make an enormous spectrum of different, novel nanoporous materials simply by changing the building blocks in the synthesis of Metal Organic Frameworks (MOF) or related materials. This unique chemical tunability allows us to tailor-make materials that are optimal for a given application. The promise of finding just the right material seems remote however: because of practical limitations we can only ever synthesize, characterize, and test a tiny fraction of all possible materials. To take full advantage of this development, therefore, we need to develop alternative techniques, collectively referred to as Materials Genomics, to rapidly screen large numbers of materials and obtain fundamental insights into the chemical nature of the ideal material for a given application. The PI will tackle the challenge and promise posed by this unprecedented chemical tunability through the development of a multi-scale computational approach, which aims to reliably predict the performance of novel materials before synthesis. We will develop methodologies to generate libraries of representative sets of synthesizable hypothetical materials and perform large-scale screening of these libraries. These studies should give us fundamental insights into the common molecular features of the top-performing materials. The methods developed will be combined into an open access infrastructure in which our hypothetical materials are publicly accessible for data mining and big-data analysis. The project is organized in three Work Packages, each centered around finding better materials for carbon capture: (1) screen materials for gas separations and develop the tools to predict the best materials for carbon capture; (2) gain insights into and develop a computational methodology for screening the mechanical properties of nanoporous materials; (3) achieve an understanding of the amine-CO2 chemistry in diamine-appended MOFs and use this to predict their performance.
Summary
It is now possible to make an enormous spectrum of different, novel nanoporous materials simply by changing the building blocks in the synthesis of Metal Organic Frameworks (MOF) or related materials. This unique chemical tunability allows us to tailor-make materials that are optimal for a given application. The promise of finding just the right material seems remote however: because of practical limitations we can only ever synthesize, characterize, and test a tiny fraction of all possible materials. To take full advantage of this development, therefore, we need to develop alternative techniques, collectively referred to as Materials Genomics, to rapidly screen large numbers of materials and obtain fundamental insights into the chemical nature of the ideal material for a given application. The PI will tackle the challenge and promise posed by this unprecedented chemical tunability through the development of a multi-scale computational approach, which aims to reliably predict the performance of novel materials before synthesis. We will develop methodologies to generate libraries of representative sets of synthesizable hypothetical materials and perform large-scale screening of these libraries. These studies should give us fundamental insights into the common molecular features of the top-performing materials. The methods developed will be combined into an open access infrastructure in which our hypothetical materials are publicly accessible for data mining and big-data analysis. The project is organized in three Work Packages, each centered around finding better materials for carbon capture: (1) screen materials for gas separations and develop the tools to predict the best materials for carbon capture; (2) gain insights into and develop a computational methodology for screening the mechanical properties of nanoporous materials; (3) achieve an understanding of the amine-CO2 chemistry in diamine-appended MOFs and use this to predict their performance.
Max ERC Funding
2 486 720 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym MAGNETO
Project Active Magnetorheological Elastomers: from Hierarchical Composite Materials to tailored Instabilities
Researcher (PI) Konstantinos Danas
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary In recent years, there has been an increased effort by scientists to obtain new composite materials with extreme properties. Inspired by natural and biological processes, scientists have proposed the use of hierarchical architectures (i.e., assembly of structural components) spanning several length scales from nanometer to centimeter sizes. Depending each time on the desired properties of the composite material, optimization with respect to its stiffness, weight, density, toughness and other properties is carried out. In the present subject, the interest is in magneto-mechanical coupling and tailored instabilities. Hierarchical materials, such as magnetorheological elastomers (MREs) which combine magnetic particles (at the scale of nanometers and micrometers) embedded in a soft polymeric non-magnetic matrix, give rise to a coupled magneto-mechanical response at the macroscopic (order of millimeters and centimeters) scale when they are subjected to combined magneto-mechanical external stimuli. These composite materials can deform at very large strains due to the presence of the soft polymeric matrix without fracturing. From an unconventional point of view, a remarkable property of these materials is that while they can become unstable by combined magneto-mechanical loading, their response is well controlled in the post-instability regime. This, in turn, allows us to try to operate these materials in this critically stable region, similar to most biological systems. These instabilities can lead to extreme responses such as wrinkles (for haptic applications), actively controlled stiffness (for cell-growth) and acoustic properties with only marginal changes in the externally applied magnetic fields. Unlike the current modeling of hierarchical composites, MREs require the development of novel experimental techniques and advanced coupled nonlinear magneto-mechanical models in order to tailor the desired macroscopic instability response at finite strains.
Summary
In recent years, there has been an increased effort by scientists to obtain new composite materials with extreme properties. Inspired by natural and biological processes, scientists have proposed the use of hierarchical architectures (i.e., assembly of structural components) spanning several length scales from nanometer to centimeter sizes. Depending each time on the desired properties of the composite material, optimization with respect to its stiffness, weight, density, toughness and other properties is carried out. In the present subject, the interest is in magneto-mechanical coupling and tailored instabilities. Hierarchical materials, such as magnetorheological elastomers (MREs) which combine magnetic particles (at the scale of nanometers and micrometers) embedded in a soft polymeric non-magnetic matrix, give rise to a coupled magneto-mechanical response at the macroscopic (order of millimeters and centimeters) scale when they are subjected to combined magneto-mechanical external stimuli. These composite materials can deform at very large strains due to the presence of the soft polymeric matrix without fracturing. From an unconventional point of view, a remarkable property of these materials is that while they can become unstable by combined magneto-mechanical loading, their response is well controlled in the post-instability regime. This, in turn, allows us to try to operate these materials in this critically stable region, similar to most biological systems. These instabilities can lead to extreme responses such as wrinkles (for haptic applications), actively controlled stiffness (for cell-growth) and acoustic properties with only marginal changes in the externally applied magnetic fields. Unlike the current modeling of hierarchical composites, MREs require the development of novel experimental techniques and advanced coupled nonlinear magneto-mechanical models in order to tailor the desired macroscopic instability response at finite strains.
Max ERC Funding
1 499 206 €
Duration
Start date: 2015-04-01, End date: 2020-03-31