Project acronym AArteMIS
Project Aneurysmal Arterial Mechanics: Into the Structure
Researcher (PI) Pierre Joseph Badel
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Summary
The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Max ERC Funding
1 499 783 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym AEROFLEX
Project AEROelastic instabilities and control of FLEXible Structures
Researcher (PI) Olivier Pierre MARQUET
Host Institution (HI) OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Summary
Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Max ERC Funding
1 377 290 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym BIOLOCHANICS
Project Localization in biomechanics and mechanobiology of aneurysms: Towards personalized medicine
Researcher (PI) Stéphane Henri Anatole Avril
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Rupture of Aortic Aneurysms (AA), which kills more than 30 000 persons every year in Europe and the USA, is a complex phenomenon that occurs when the wall stress exceeds the local strength of the aorta due to degraded properties of the tissue. The state of the art in AA biomechanics and mechanobiology reveals that major scientific challenges still have to be addressed to permit patient-specific computational predictions of AA rupture and enable localized repair of the structure with targeted pharmacologic treatment. A first challenge relates to ensuring an objective prediction of localized mechanisms preceding rupture. A second challenge relates to modelling the patient-specific evolutions of material properties leading to the localized mechanisms preceding rupture. Addressing these challenges is the aim of the BIOLOCHANICS proposal. We will take into account internal length-scales controlling localization mechanisms preceding AA rupture by implementing an enriched, also named nonlocal, continuum damage theory in the computational models of AA biomechanics and mechanobiology. We will also develop very advanced experiments, based on full-field optical measurements, aimed at characterizing localization mechanisms occurring in aortic tissues and at identifying local distributions of material properties at different stages of AA progression. A first in vivo application will be performed on genetic and pharmacological models of mice and rat AA. Eventually, a retrospective clinical study involving more than 100 patients at the Saint-Etienne University hospital will permit calibrating estimations of AA rupture risk thanks to our novel approaches and infuse them into future clinical practice. Through the achievements of BIOLOCHANICS, nonlocal mechanics will be possibly extended to other soft tissues for applications in orthopaedics, oncology, sport biomechanics, interventional surgery, human safety, cell biology, etc.
Summary
Rupture of Aortic Aneurysms (AA), which kills more than 30 000 persons every year in Europe and the USA, is a complex phenomenon that occurs when the wall stress exceeds the local strength of the aorta due to degraded properties of the tissue. The state of the art in AA biomechanics and mechanobiology reveals that major scientific challenges still have to be addressed to permit patient-specific computational predictions of AA rupture and enable localized repair of the structure with targeted pharmacologic treatment. A first challenge relates to ensuring an objective prediction of localized mechanisms preceding rupture. A second challenge relates to modelling the patient-specific evolutions of material properties leading to the localized mechanisms preceding rupture. Addressing these challenges is the aim of the BIOLOCHANICS proposal. We will take into account internal length-scales controlling localization mechanisms preceding AA rupture by implementing an enriched, also named nonlocal, continuum damage theory in the computational models of AA biomechanics and mechanobiology. We will also develop very advanced experiments, based on full-field optical measurements, aimed at characterizing localization mechanisms occurring in aortic tissues and at identifying local distributions of material properties at different stages of AA progression. A first in vivo application will be performed on genetic and pharmacological models of mice and rat AA. Eventually, a retrospective clinical study involving more than 100 patients at the Saint-Etienne University hospital will permit calibrating estimations of AA rupture risk thanks to our novel approaches and infuse them into future clinical practice. Through the achievements of BIOLOCHANICS, nonlocal mechanics will be possibly extended to other soft tissues for applications in orthopaedics, oncology, sport biomechanics, interventional surgery, human safety, cell biology, etc.
Max ERC Funding
1 999 396 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BRAIN MICRO SNOOPER
Project A mimetic implant for low perturbation, stable stimulation and recording of neural units inside the brain.
Researcher (PI) Gaelle Offranc piret
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Summary
Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Max ERC Funding
1 499 850 €
Duration
Start date: 2015-08-01, End date: 2021-07-31
Project acronym EQuO
Project Electron Quantum optics in quantum Hall edge channels
Researcher (PI) Gwendal Feve
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2014-CoG
Summary Quantum effects have been studied on photon propagation in the context of quantum optics since the second half of the last century. In particular, using single photon emitters, fundamental tests of quantum mechanics were explored by manipulating single to few photons in Hanbury-Brown and Twiss and Hong Ou Mandel experiments.
In nanophysics, there is a growing interest to translate these concepts of quantum optics to electrons propagating in nanostructures. Single electron emitters have been realized such that single elementary electronic excitations can now be manipulated in the analog of pioneer quantum optics experiments.
Electron quantum optics goes beyond the mere reproduction of optical setups using electron beams, as electrons, being interacting fermions, differ strongly from photons. Contrary to optics, understanding the propagation of an elementary excitation requires replacing the single body description by a many body one.
The purpose of this proposal is to specifically explore the emergence of many body physics and its effects on electronic propagation using the setups and concepts of electron quantum optics. The motivations are numerous: firstly single particle emission initializes a simple and well controlled state. I will take this unique opportunity to test birth, life and death scenarii of Landau quasiparticles and observe the emergence of many-body physics. Secondly, I will address the generation of entangled few electrons quantum coherent states and study how they are affected by interactions. Finally, I will attempt to apply electron quantum optics concepts to a regime where the ground state itself is a strongly correlated state of matter. In such a situation, elementary excitations are no longer electrons but carry a fractional charge and obey fractional statistics. No manipulation of single quasiparticles has been reported yet and the determination of some quasiparticle characteristics, such as the fractional statistics remains elusive.
Summary
Quantum effects have been studied on photon propagation in the context of quantum optics since the second half of the last century. In particular, using single photon emitters, fundamental tests of quantum mechanics were explored by manipulating single to few photons in Hanbury-Brown and Twiss and Hong Ou Mandel experiments.
In nanophysics, there is a growing interest to translate these concepts of quantum optics to electrons propagating in nanostructures. Single electron emitters have been realized such that single elementary electronic excitations can now be manipulated in the analog of pioneer quantum optics experiments.
Electron quantum optics goes beyond the mere reproduction of optical setups using electron beams, as electrons, being interacting fermions, differ strongly from photons. Contrary to optics, understanding the propagation of an elementary excitation requires replacing the single body description by a many body one.
The purpose of this proposal is to specifically explore the emergence of many body physics and its effects on electronic propagation using the setups and concepts of electron quantum optics. The motivations are numerous: firstly single particle emission initializes a simple and well controlled state. I will take this unique opportunity to test birth, life and death scenarii of Landau quasiparticles and observe the emergence of many-body physics. Secondly, I will address the generation of entangled few electrons quantum coherent states and study how they are affected by interactions. Finally, I will attempt to apply electron quantum optics concepts to a regime where the ground state itself is a strongly correlated state of matter. In such a situation, elementary excitations are no longer electrons but carry a fractional charge and obey fractional statistics. No manipulation of single quasiparticles has been reported yet and the determination of some quasiparticle characteristics, such as the fractional statistics remains elusive.
Max ERC Funding
1 997 878 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym FireBar-Concept
Project MULTI-CONCEPTUAL DESIGN OF FIRE BARRIER: A SYSTEMIC APPROACH
Researcher (PI) Serge Bourbigot
Host Institution (HI) UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE - LILLE I
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread.
The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario). This fire barrier can be developed in several ways according to the chemical nature of the material and/or of its formulation:
- Heat barrier formed by inherently flame retarded materials (e.g. mineral fibers, ceramic …) and exhibiting low thermal conductivity (note the assembly of those materials can also provide low thermal conductivity controlling porosity and its distribution)
- Evolution of reactive radicals poisoning the flame and forming a protective ‘umbrella’ avoiding the combustion of the material
- Additives promoting charring of the materials and forming an expanding carbonaceous protective coating or barrier (intumescence)
- Additives forming a physical barrier limiting mass transfer of the degradation products to the flame
The FireBar-Concept project is multidisciplinary and it requires expertise in material science, chemical engineering, chemistry, thermal science and physics. The approach is to make 5 actions linked together by transverse developments (3) according to this scheme: (i) fundamentals of fire barrier, (ii) multi-material and combination of concepts, (iii) modeling and numerical simulation, (iv) design and development of experimental protocols and (v) optimization of the systems.
Summary
The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread.
The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario). This fire barrier can be developed in several ways according to the chemical nature of the material and/or of its formulation:
- Heat barrier formed by inherently flame retarded materials (e.g. mineral fibers, ceramic …) and exhibiting low thermal conductivity (note the assembly of those materials can also provide low thermal conductivity controlling porosity and its distribution)
- Evolution of reactive radicals poisoning the flame and forming a protective ‘umbrella’ avoiding the combustion of the material
- Additives promoting charring of the materials and forming an expanding carbonaceous protective coating or barrier (intumescence)
- Additives forming a physical barrier limiting mass transfer of the degradation products to the flame
The FireBar-Concept project is multidisciplinary and it requires expertise in material science, chemical engineering, chemistry, thermal science and physics. The approach is to make 5 actions linked together by transverse developments (3) according to this scheme: (i) fundamentals of fire barrier, (ii) multi-material and combination of concepts, (iii) modeling and numerical simulation, (iv) design and development of experimental protocols and (v) optimization of the systems.
Max ERC Funding
2 429 988 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym FORCASTER
Project Force, Motion and Positioning of Microtubule Asters
Researcher (PI) Nicolas David Minc
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2014-CoG
Summary Cells must move and position internal components to perform their function. We here focus on the physical designs which allow microtubule (MT) asters to exert forces in order to move and position themselves in vivo. These are arrays of MTs radiating from the centrosome, which fill up large portions of cells. They orchestrate nuclear positioning and spindle orientation for polarity, division and development. Forces that move asters are generated at nanometer and second scales by MT-associated motors from sites in the cytoplasm or at the cell surface. How MTs and force-generators self-organize to control aster motion and position at millimeter and hour scales is not known. We will use a suit of biophysical experiments and models to address how aster micro-mechanics contribute to aster migration, centration, de-centration and orientation in a single in vivo system, using the early stages of Sea urchin development as a quantitative model.
We aim to: 1) Elucidate mechanisms that drive aster large-scale motion, using sperm aster migration after fertilization during which asters grow and move rapidly and persistently to the large-egg center. We will investigate how speeds and trajectories depend on boundary conditions and on the dynamic spatial organization of force-generators.
2) Implement magnetic-based subcellular force measurements of MT asters. We will use this to understand how single force-events are integrated at the scale of asters, how global forces may evolve will aster size, shape, in centration and de-centration processes, using various stages of development, and cell manipulation; and to compute aster friction.
3) Couple computational models and 3D imaging to understand and predict stereotyped division patterns driven by subsequent aster positioning and aster-pairs orientation in the early divisions of Sea urchin embryos and in other tissues.
This framework bridging multiple scales will bring unprecedented insights on the physics of living active matter.
Summary
Cells must move and position internal components to perform their function. We here focus on the physical designs which allow microtubule (MT) asters to exert forces in order to move and position themselves in vivo. These are arrays of MTs radiating from the centrosome, which fill up large portions of cells. They orchestrate nuclear positioning and spindle orientation for polarity, division and development. Forces that move asters are generated at nanometer and second scales by MT-associated motors from sites in the cytoplasm or at the cell surface. How MTs and force-generators self-organize to control aster motion and position at millimeter and hour scales is not known. We will use a suit of biophysical experiments and models to address how aster micro-mechanics contribute to aster migration, centration, de-centration and orientation in a single in vivo system, using the early stages of Sea urchin development as a quantitative model.
We aim to: 1) Elucidate mechanisms that drive aster large-scale motion, using sperm aster migration after fertilization during which asters grow and move rapidly and persistently to the large-egg center. We will investigate how speeds and trajectories depend on boundary conditions and on the dynamic spatial organization of force-generators.
2) Implement magnetic-based subcellular force measurements of MT asters. We will use this to understand how single force-events are integrated at the scale of asters, how global forces may evolve will aster size, shape, in centration and de-centration processes, using various stages of development, and cell manipulation; and to compute aster friction.
3) Couple computational models and 3D imaging to understand and predict stereotyped division patterns driven by subsequent aster positioning and aster-pairs orientation in the early divisions of Sea urchin embryos and in other tissues.
This framework bridging multiple scales will bring unprecedented insights on the physics of living active matter.
Max ERC Funding
2 199 310 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym IMAGINE
Project Imaging magnetic fields at the nanoscale with a single spin microscope
Researcher (PI) Vincent, Henri Jacques
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2014-STG
Summary Detecting and imaging magnetic fields with high sensitivity and nanoscale resolution is a topic of crucial importance for a wealth of research domains, from material science, to mesoscopic physics, and life sciences. This is obviously also a key requirement for fundamental studies in nanomagnetism and the design of innovative magnetic materials with tailored properties for applications in spintronics. Although a remarkable number of magnetic microscopy techniques have been developed over the last decades, imaging magnetism at the nanoscale remains a challenging task.
It was recently realized that the experimental methods allowing for the detection of single spins in the solid-state, which were initially developed for quantum information science, open new avenues for high sensitivity magnetometry. In that spirit, it was recently proposed to use the electronic spin of a single nitrogen-vacancy (NV) defect in diamond as a nanoscale quantum sensor for scanning probe magnetometry. This approach promises significant advances in magnetic imaging since it provides quantitative and vectorial magnetic field measurements, with an unprecedented combination of spatial resolution and magnetic sensitivity, even under ambient conditions.
The IMAGINE project intend to exploit the unique performances of scanning-NV magnetometry to achieve major breakthroughs in nanomagnetism. We will first explore the structure of domain walls and individual skyrmions in ultrathin magnetic wires, which both promise disruptive applications in spintronics. This will lead (i) to solve an important academic debate regarding the inner structure of domain walls and (ii) to the first detection of individual skyrmions in ultrathin magnetic wire under ambient conditions. This might result in a new paradigm for spin-based applications in nanoelectronics. We will then explore orbital magnetism in graphene, which has never been observed experimentally and is the purpose of surprising theoretical predictions.
Summary
Detecting and imaging magnetic fields with high sensitivity and nanoscale resolution is a topic of crucial importance for a wealth of research domains, from material science, to mesoscopic physics, and life sciences. This is obviously also a key requirement for fundamental studies in nanomagnetism and the design of innovative magnetic materials with tailored properties for applications in spintronics. Although a remarkable number of magnetic microscopy techniques have been developed over the last decades, imaging magnetism at the nanoscale remains a challenging task.
It was recently realized that the experimental methods allowing for the detection of single spins in the solid-state, which were initially developed for quantum information science, open new avenues for high sensitivity magnetometry. In that spirit, it was recently proposed to use the electronic spin of a single nitrogen-vacancy (NV) defect in diamond as a nanoscale quantum sensor for scanning probe magnetometry. This approach promises significant advances in magnetic imaging since it provides quantitative and vectorial magnetic field measurements, with an unprecedented combination of spatial resolution and magnetic sensitivity, even under ambient conditions.
The IMAGINE project intend to exploit the unique performances of scanning-NV magnetometry to achieve major breakthroughs in nanomagnetism. We will first explore the structure of domain walls and individual skyrmions in ultrathin magnetic wires, which both promise disruptive applications in spintronics. This will lead (i) to solve an important academic debate regarding the inner structure of domain walls and (ii) to the first detection of individual skyrmions in ultrathin magnetic wire under ambient conditions. This might result in a new paradigm for spin-based applications in nanoelectronics. We will then explore orbital magnetism in graphene, which has never been observed experimentally and is the purpose of surprising theoretical predictions.
Max ERC Funding
1 498 810 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym iTPX
Project In-cavity thermophotonic cooling
Researcher (PI) Jani Erkki Oksanen
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Thermophotonic (TPX) coolers and generators based on electroluminescent (EL) cooling have the potential to enable a high efficiency replacement for thermoelectric devices. Highly optimized TPX devices can even outperform modern compressor based household refrigerators and heat pumps, enabling a significant reduction in the global energy consumption of cooling and heating. While the EL cooling phenomenon is theoretically well understood, it was only very recently demonstrated for the first time under very small power conditions. Enabling high power EL cooling, however, will require a breakthrough in reducing the losses present in conventional light emitting diodes (LED).
iTPX aims to enable this breakthrough by developing an alternative approach to enhance the efficiency of light emission. The approach is based on enclosing the emitter-absorber pair used in TPX in a single semiconductor structure forming an optical cavity. This enhances the light emission rate by an order of magnitude and provides a substantial increase in the efficiency as well as several other technical and fundamental benefits. The main goal of iTPX is to demonstrate high power EL cooling for the first time and to provide quantitative insight on the limitations and possibilities of the cavity-based approach. Recent studies have shown extremely high – over 99 % – internal and external quantum efficiencies of light emission from optically pumped semiconductor structures. This suggests that the material quality of common III-V compound semiconductors is perfectly sufficient for EL cooling if similarly performing electrically injected structures can be fabricated in the single cavity configuration.
Summary
Thermophotonic (TPX) coolers and generators based on electroluminescent (EL) cooling have the potential to enable a high efficiency replacement for thermoelectric devices. Highly optimized TPX devices can even outperform modern compressor based household refrigerators and heat pumps, enabling a significant reduction in the global energy consumption of cooling and heating. While the EL cooling phenomenon is theoretically well understood, it was only very recently demonstrated for the first time under very small power conditions. Enabling high power EL cooling, however, will require a breakthrough in reducing the losses present in conventional light emitting diodes (LED).
iTPX aims to enable this breakthrough by developing an alternative approach to enhance the efficiency of light emission. The approach is based on enclosing the emitter-absorber pair used in TPX in a single semiconductor structure forming an optical cavity. This enhances the light emission rate by an order of magnitude and provides a substantial increase in the efficiency as well as several other technical and fundamental benefits. The main goal of iTPX is to demonstrate high power EL cooling for the first time and to provide quantitative insight on the limitations and possibilities of the cavity-based approach. Recent studies have shown extremely high – over 99 % – internal and external quantum efficiencies of light emission from optically pumped semiconductor structures. This suggests that the material quality of common III-V compound semiconductors is perfectly sufficient for EL cooling if similarly performing electrically injected structures can be fabricated in the single cavity configuration.
Max ERC Funding
1 981 250 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym JSPEC
Project Josephson Junction Spectroscopy of Mesoscopic Systems
Researcher (PI) Caglar Ozgun Girit
Host Institution (HI) COLLEGE DE FRANCE
Call Details Starting Grant (StG), PE3, ERC-2014-STG
Summary Spectroscopy is a powerful tool to probe matter. By measuring the spectrum of elementary excitations, one reveals the symmetries and interactions inherent in a physical system. Mesoscopic devices, which preserve quantum coherence over lengths larger than the atomic scale, offer a unique possibility to both engineer and investigate excitations at the single quanta level. Unfortunately, conventional spectroscopy techniques are inadequate for coupling radiation to mesoscopic systems and detecting their small absorption signals. I propose an on-chip, Josephson-junction based spectrometer which surpasses state-of-the-art instruments and is ideally suited for probing elementary excitations in mesoscopic systems. It has an original design providing uniform wideband coupling from 2-2000 GHz, low background noise, high sensitivity, and narrow linewidth.
I describe the operating principle and design of the spectrometer, show preliminary results demonstrating proof-of-concept, and outline three experiments which exploit the spectrometer to address important issues in condensed matter physics. The experiments are: measuring the lifetime of single quasiparticle and excited Cooper pair states in superconductors, a topic relevant for quantum information processing; determining whether graphene has a bandgap, a fundamental yet unresolved question; and recording a clear spectroscopic signature of Majorana bound states in topological superconductor weak links.
Various applications of the superconducting circuits developed for the spectrometer include a Josephson vector network analyzer, a cryogenic mixer, a THz camera, a detector for radioastronomy, and a scanning microwave impedance microscope. In itself the proposed JJ spectrometer is a general purpose tool that will benefit researchers studying mesoscopic systems. Ultimately, Josephson junction spectroscopy should not only be useful to detect existing elementary excitations but also to discover new ones.
Summary
Spectroscopy is a powerful tool to probe matter. By measuring the spectrum of elementary excitations, one reveals the symmetries and interactions inherent in a physical system. Mesoscopic devices, which preserve quantum coherence over lengths larger than the atomic scale, offer a unique possibility to both engineer and investigate excitations at the single quanta level. Unfortunately, conventional spectroscopy techniques are inadequate for coupling radiation to mesoscopic systems and detecting their small absorption signals. I propose an on-chip, Josephson-junction based spectrometer which surpasses state-of-the-art instruments and is ideally suited for probing elementary excitations in mesoscopic systems. It has an original design providing uniform wideband coupling from 2-2000 GHz, low background noise, high sensitivity, and narrow linewidth.
I describe the operating principle and design of the spectrometer, show preliminary results demonstrating proof-of-concept, and outline three experiments which exploit the spectrometer to address important issues in condensed matter physics. The experiments are: measuring the lifetime of single quasiparticle and excited Cooper pair states in superconductors, a topic relevant for quantum information processing; determining whether graphene has a bandgap, a fundamental yet unresolved question; and recording a clear spectroscopic signature of Majorana bound states in topological superconductor weak links.
Various applications of the superconducting circuits developed for the spectrometer include a Josephson vector network analyzer, a cryogenic mixer, a THz camera, a detector for radioastronomy, and a scanning microwave impedance microscope. In itself the proposed JJ spectrometer is a general purpose tool that will benefit researchers studying mesoscopic systems. Ultimately, Josephson junction spectroscopy should not only be useful to detect existing elementary excitations but also to discover new ones.
Max ERC Funding
1 997 498 €
Duration
Start date: 2015-04-01, End date: 2020-03-31