Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ARMOS
Project Advanced multifunctional Reactors for green Mobility and Solar fuels
Researcher (PI) Athanasios Konstandopoulos
Host Institution (HI) ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
Call Details Advanced Grant (AdG), PE8, ERC-2010-AdG_20100224
Summary Green Mobility requires an integrated approach to the chain fuel/engine/emissions. The present project aims at ground breaking advances in the area of Green Mobility by (a) enabling the production of affordable, carbon-neutral, clean, solar fuels using exclusively renewable/recyclable raw materials, namely solar energy, water and captured Carbon Dioxide from combustion power plants (b) developing a highly compact, multifunctional reactor, able to eliminate gaseous and particulate emissions from the exhaust of engines operated on such clean fuels.
The overall research approach will be based on material science, engineering and simulation technology developed by the PI over the past 20 years in the area of Diesel Emission Control Reactors, which will be further extended and cross-fertilized in the area of Solar Thermochemical Reactors, an emerging discipline of high importance for sustainable development, where the PI’s research group has already made significant contributions, and received the 2006 European Commission’s Descartes Prize for the development of the first ever solar reactor, holding the potential to produce on a large scale, pure renewable Hydrogen from the thermochemical splitting of water, also known as the HYDROSOL technology.
Summary
Green Mobility requires an integrated approach to the chain fuel/engine/emissions. The present project aims at ground breaking advances in the area of Green Mobility by (a) enabling the production of affordable, carbon-neutral, clean, solar fuels using exclusively renewable/recyclable raw materials, namely solar energy, water and captured Carbon Dioxide from combustion power plants (b) developing a highly compact, multifunctional reactor, able to eliminate gaseous and particulate emissions from the exhaust of engines operated on such clean fuels.
The overall research approach will be based on material science, engineering and simulation technology developed by the PI over the past 20 years in the area of Diesel Emission Control Reactors, which will be further extended and cross-fertilized in the area of Solar Thermochemical Reactors, an emerging discipline of high importance for sustainable development, where the PI’s research group has already made significant contributions, and received the 2006 European Commission’s Descartes Prize for the development of the first ever solar reactor, holding the potential to produce on a large scale, pure renewable Hydrogen from the thermochemical splitting of water, also known as the HYDROSOL technology.
Max ERC Funding
1 750 000 €
Duration
Start date: 2011-02-01, End date: 2017-01-31
Project acronym ATMOPACS
Project Atmospheric Organic Particulate Matter, Air Quality and Climate Change Studies
Researcher (PI) Spyridon Pandis
Host Institution (HI) FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Despite its importance for human health and climate change organic aerosol (OA) remains one of the least understood aspects of atmospheric chemistry. We propose to develop an innovative new framework for the description of OA in chemical transport and climate models that will be able to overcome the challenges posed by the chemical complexity of OA while capturing its essential features.
The objectives of ATMOPACS are: (i) The development of a new unified framework for the description of OA based on its two most important parameters: volatility and oxygen content. (ii) The development of measurement techniques for the volatility distribution and oxygen content distribution of OA. This will allow the experimental characterization of OA in this new “coordinate system”. (iii) The study of the major OA processes (partitioning, chemical aging, hygroscopicity, CCN formation, nucleation) in this new framework combining lab and field measurements. (iv) The development and evaluation of the next generation of regional and global CTMs using the above framework. (v) The quantification of the importance of the various sources and formation pathways of OA in Europe and the world, of the sensitivity of OA to emission control strategies, and its role in the direct and indirect effects of aerosols on climate.
The proposed work involves a combination of laboratory measurements, field measurements including novel “atmospheric perturbation experiments”, OA model development, and modelling in urban, regional, and global scales. Therefore, it will span the system scales starting from the nanoscale to the global. The modelling tools that will be developed will be made available to all other research groups.
Summary
Despite its importance for human health and climate change organic aerosol (OA) remains one of the least understood aspects of atmospheric chemistry. We propose to develop an innovative new framework for the description of OA in chemical transport and climate models that will be able to overcome the challenges posed by the chemical complexity of OA while capturing its essential features.
The objectives of ATMOPACS are: (i) The development of a new unified framework for the description of OA based on its two most important parameters: volatility and oxygen content. (ii) The development of measurement techniques for the volatility distribution and oxygen content distribution of OA. This will allow the experimental characterization of OA in this new “coordinate system”. (iii) The study of the major OA processes (partitioning, chemical aging, hygroscopicity, CCN formation, nucleation) in this new framework combining lab and field measurements. (iv) The development and evaluation of the next generation of regional and global CTMs using the above framework. (v) The quantification of the importance of the various sources and formation pathways of OA in Europe and the world, of the sensitivity of OA to emission control strategies, and its role in the direct and indirect effects of aerosols on climate.
The proposed work involves a combination of laboratory measurements, field measurements including novel “atmospheric perturbation experiments”, OA model development, and modelling in urban, regional, and global scales. Therefore, it will span the system scales starting from the nanoscale to the global. The modelling tools that will be developed will be made available to all other research groups.
Max ERC Funding
2 496 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CODAMODA
Project Controlling Data Movement in the Digital Age
Researcher (PI) Aggelos Kiayias
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Summary
Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Max ERC Funding
1 212 960 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym DROSOPIRNAS
Project The piRNA pathway in the Drosophila germline a small RNA based genome immune system
Researcher (PI) Julius Brennecke
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The discovery of RNA interference (RNAi) has revolutionized biology. As a technology it opened up new experimental and therapeutic avenues. As a biological phenomenon it changed our view on a diverse array of cellular processes. Among those are the control of gene expression, the suppression of viral replication, the formation of heterochromatin and the protection of the genome against selfish genetic elements such as transposons.
I propose to study the molecular mechanism and the biological impact of a recently discovered RNAi pathway, the Piwi interacting RNA pathway (piRNA pathway).
The piRNA pathway is an evolutionarily conserved small RNA pathway acting in the animal germline. It is the key genome surveillance system that suppresses the activity of transposons. Recent work has provided a conceptual framework for this pathway: According to this, the genome stores transposon sequences in heterochromatic loci called piRNA clusters. These provide the RNA substrates for the biogenesis of 23-29 nt long piRNAs. An amplification cycle steers piRNA production predominantly to those cluster regions that are complementary to transposons being active at a given time. Finally, piRNAs guide a protein complex centered on Piwi-proteins to complementary transposon RNAs in the cell, leading to their silencing.
In contrast to other RNAi pathways, the mechanistic framework of the piRNA pathway is largely unknown. Moreover, the spectrum of biological processes impacted by it is only poorly understood. piRNAs are for example not only derived from transposon sequences but also from various other genomic repeats that are enriched at telomeres and in heterochromatin.
We will systematically dissect the piRNA pathway regarding its molecular architecture as well as its biological functions in Drosophila. Our studies will be a combination of fly genetics, proteomics and genomics approaches. Throughout we aim at linking our results back to the underlying biology of germline development.
Summary
The discovery of RNA interference (RNAi) has revolutionized biology. As a technology it opened up new experimental and therapeutic avenues. As a biological phenomenon it changed our view on a diverse array of cellular processes. Among those are the control of gene expression, the suppression of viral replication, the formation of heterochromatin and the protection of the genome against selfish genetic elements such as transposons.
I propose to study the molecular mechanism and the biological impact of a recently discovered RNAi pathway, the Piwi interacting RNA pathway (piRNA pathway).
The piRNA pathway is an evolutionarily conserved small RNA pathway acting in the animal germline. It is the key genome surveillance system that suppresses the activity of transposons. Recent work has provided a conceptual framework for this pathway: According to this, the genome stores transposon sequences in heterochromatic loci called piRNA clusters. These provide the RNA substrates for the biogenesis of 23-29 nt long piRNAs. An amplification cycle steers piRNA production predominantly to those cluster regions that are complementary to transposons being active at a given time. Finally, piRNAs guide a protein complex centered on Piwi-proteins to complementary transposon RNAs in the cell, leading to their silencing.
In contrast to other RNAi pathways, the mechanistic framework of the piRNA pathway is largely unknown. Moreover, the spectrum of biological processes impacted by it is only poorly understood. piRNAs are for example not only derived from transposon sequences but also from various other genomic repeats that are enriched at telomeres and in heterochromatin.
We will systematically dissect the piRNA pathway regarding its molecular architecture as well as its biological functions in Drosophila. Our studies will be a combination of fly genetics, proteomics and genomics approaches. Throughout we aim at linking our results back to the underlying biology of germline development.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym EASTFE3
Project Efficient and accurate simulation techniques for free energies, enthalpies and entropies
Researcher (PI) Bernard Christiaan Oostenbrink
Host Institution (HI) UNIVERSITAET FUER BODENKULTUR WIEN
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Summary
Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Max ERC Funding
1 485 615 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ENSENA
Project Entanglement from Semiconductor Nanostructures
Researcher (PI) Gregor Weihs
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary At the interface between quantum optics and semiconductors we find a rich field of investigation with huge potential for quantum information processing communication technologies. Entanglement is one of the most fascinating concepts in quantum physics research as well as an important resource for quantum information processing.
This project will develop novel sources of entangled photon pairs with semiconductor nanostructures. In particular, we will use the scattering of microcavity exciton-polaritons as an extremely strong optical nonlinearity for the generation of entanglement with properties that are difficult to achieve with the traditional methods. Further we will work with individual semiconductor quantum dots to create controlled single entangled pairs and explore the interfacing of quantum dots to flying qubits.
The long term vision of this research is to create integrated sources of entanglement that can be combined with laser sources, passive optical elements, and even detectors in order to realize the quantum optics lab on a chip.
Summary
At the interface between quantum optics and semiconductors we find a rich field of investigation with huge potential for quantum information processing communication technologies. Entanglement is one of the most fascinating concepts in quantum physics research as well as an important resource for quantum information processing.
This project will develop novel sources of entangled photon pairs with semiconductor nanostructures. In particular, we will use the scattering of microcavity exciton-polaritons as an extremely strong optical nonlinearity for the generation of entanglement with properties that are difficult to achieve with the traditional methods. Further we will work with individual semiconductor quantum dots to create controlled single entangled pairs and explore the interfacing of quantum dots to flying qubits.
The long term vision of this research is to create integrated sources of entanglement that can be combined with laser sources, passive optical elements, and even detectors in order to realize the quantum optics lab on a chip.
Max ERC Funding
1 259 726 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ERBIUM
Project Ultracold Erbium: Exploring Exotic Quantum Gases
Researcher (PI) Francesca Ferlaino
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Ultracold quantum gases have exceptional properties and offer an ideal test-bed to elucidate intriguing phenomena of modern quantum physics. My project proposes to use a new exotic element to study strong dipolar effects in quantum gases. For its appealing properties, we choose erbium (Er), a rare-earth metal that has hardly been explored until now. This species is strongly magnetic and comparatively heavy. Due to these characteristics, we expect the quantum system to be of extreme dipolar character and to exhibit a large number of magnetic Feshbach resonances, necessary to manipulate the low-energy scattering properties. Moreover, this element has a very rich energy level spectrum, which could open up the way to establish novel laser cooling schemes, and it has numerous isotopes, one of them having a fermionic character. Remarkably, none of the species so far used in ultracold quantum gas experiments offers such a unique combination of properties! By using Erbium, we will be in an optimal position to produce a strongly dipolar atomic gases of bosons and fermions with tunable contact interaction. First important goals of the ERBIUM project include: Extensive study of Er scattering properties, realization of the first Bose-Einstein condensates and degenerate Fermi gases of erbium atoms, study of dipolar effects in atomic system, production of strongly polar weakly-bound Er molecules and study their properties in a two-dimensional trapping environment. We also have a long-term vision for the ERBIUM project: we will mix heavy erbium atoms with much lighter lithium atoms to produce atomic mixtures with extreme mass imbalance.
Summary
Ultracold quantum gases have exceptional properties and offer an ideal test-bed to elucidate intriguing phenomena of modern quantum physics. My project proposes to use a new exotic element to study strong dipolar effects in quantum gases. For its appealing properties, we choose erbium (Er), a rare-earth metal that has hardly been explored until now. This species is strongly magnetic and comparatively heavy. Due to these characteristics, we expect the quantum system to be of extreme dipolar character and to exhibit a large number of magnetic Feshbach resonances, necessary to manipulate the low-energy scattering properties. Moreover, this element has a very rich energy level spectrum, which could open up the way to establish novel laser cooling schemes, and it has numerous isotopes, one of them having a fermionic character. Remarkably, none of the species so far used in ultracold quantum gas experiments offers such a unique combination of properties! By using Erbium, we will be in an optimal position to produce a strongly dipolar atomic gases of bosons and fermions with tunable contact interaction. First important goals of the ERBIUM project include: Extensive study of Er scattering properties, realization of the first Bose-Einstein condensates and degenerate Fermi gases of erbium atoms, study of dipolar effects in atomic system, production of strongly polar weakly-bound Er molecules and study their properties in a two-dimensional trapping environment. We also have a long-term vision for the ERBIUM project: we will mix heavy erbium atoms with much lighter lithium atoms to produce atomic mixtures with extreme mass imbalance.
Max ERC Funding
1 076 442 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym HEMOX
Project The male-female health-mortality paradox
Researcher (PI) Marc Luy
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Starting Grant (StG), SH3, ERC-2010-StG_20091209
Summary "From the 1960s to the 1980s a common wisdom about differences between males and females in health and mortality emerged which was summarised by the well-known phrase ""women are sicker, but men die quicker"". Recently this wisdom has been increasingly questioned. Nevertheless, the general idea of a paradoxical relationship between health and mortality among women and men persists until today. The purpose of this project is to decisively advance the understanding of the paradox by demonstrating that the reverse relationship between sex on the one side and health and mortality on the other is not as paradoxical as it seems. We hypothesise that two factors are mainly responsible for causing this intuitive contradiction. First, the overall reversal in sex morbidity and sex mortality differentials occurs because conditions that figure importantly in morbidity are not very important in mortality, and vice versa. Second, it is very likely that longevity is directly related to the absolute number of life years in ill health. Thus, women show higher morbidity rates not because they are female but because they are the sex with higher life expectancy. We will test these hypotheses in a ""natural experiment"" by analysing the relationship between health and mortality among Catholic nuns and monks from Austria and Germany in comparison to women and men of the general population. Cloister studies have a long scientific tradition and provided path-breaking knowledge for human medicine and demography, including the applicant s research during the last decade. This project follows the line of this tradition and will investigate the male-female health-mortality paradox in a longitudinal setting that is as close as one can get to an ideal long-term experiment in humans."
Summary
"From the 1960s to the 1980s a common wisdom about differences between males and females in health and mortality emerged which was summarised by the well-known phrase ""women are sicker, but men die quicker"". Recently this wisdom has been increasingly questioned. Nevertheless, the general idea of a paradoxical relationship between health and mortality among women and men persists until today. The purpose of this project is to decisively advance the understanding of the paradox by demonstrating that the reverse relationship between sex on the one side and health and mortality on the other is not as paradoxical as it seems. We hypothesise that two factors are mainly responsible for causing this intuitive contradiction. First, the overall reversal in sex morbidity and sex mortality differentials occurs because conditions that figure importantly in morbidity are not very important in mortality, and vice versa. Second, it is very likely that longevity is directly related to the absolute number of life years in ill health. Thus, women show higher morbidity rates not because they are female but because they are the sex with higher life expectancy. We will test these hypotheses in a ""natural experiment"" by analysing the relationship between health and mortality among Catholic nuns and monks from Austria and Germany in comparison to women and men of the general population. Cloister studies have a long scientific tradition and provided path-breaking knowledge for human medicine and demography, including the applicant s research during the last decade. This project follows the line of this tradition and will investigate the male-female health-mortality paradox in a longitudinal setting that is as close as one can get to an ideal long-term experiment in humans."
Max ERC Funding
999 999 €
Duration
Start date: 2011-04-01, End date: 2016-09-30