Project acronym AGINGSEXDIFF
Project Aging Differently: Understanding Sex Differences in Reproductive, Demographic and Functional Senescence
Researcher (PI) Alexei Maklakov
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Summary
Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Max ERC Funding
1 391 904 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym AIME
Project An Inquiry into Modes of Existence
Researcher (PI) Bruno Latour
Host Institution (HI) FONDATION NATIONALE DES SCIENCES POLITIQUES
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary "AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Summary
"AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Max ERC Funding
1 334 720 €
Duration
Start date: 2011-09-01, End date: 2015-06-30
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALICE
Project Strange Mirrors, Unsuspected Lessons: Leading Europe to a new way of sharing the world experiences
Researcher (PI) Boaventura De Sousa Santos
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Summary
Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Max ERC Funding
2 423 140 €
Duration
Start date: 2011-07-01, End date: 2016-12-31
Project acronym ALLQUANTUM
Project All-solid-state quantum electrodynamics in photonic crystals
Researcher (PI) Peter Lodahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Summary
In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Max ERC Funding
1 199 648 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym ALOGLADIS
Project From Anderson localization to Bose, Fermi and spin glasses in disordered ultracold gases
Researcher (PI) Laurent Sanchez-Palencia
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Summary
The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Max ERC Funding
985 200 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALORS
Project Advanced Lagrangian Optimization, Receptivity and Sensitivity analysis applied to industrial situations
Researcher (PI) Matthew Pudan Juniper
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Summary
In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Max ERC Funding
1 301 196 €
Duration
Start date: 2010-12-01, End date: 2016-06-30
Project acronym AMOPROX
Project Quantifying Aerobic Methane Oxidation in the Ocean: Calibration and palaeo application of a novel proxy
Researcher (PI) Helen Marie Talbot
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Summary
Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Max ERC Funding
1 496 392 €
Duration
Start date: 2010-11-01, End date: 2016-04-30
Project acronym AMPCAT
Project Self-Amplifying Stereodynamic Catalysts in Enantioselective Catalysis
Researcher (PI) Oliver Trapp
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Summary
Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Max ERC Funding
1 452 000 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31