Project acronym CASAA
Project Catalytic asymmetric synthesis of amines and amides
Researcher (PI) Jeffrey William Bode
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Amines and their acylated derivatives – amides – are among the most common chemical functional groups found in modern pharmaceuticals. Despite this there are few methods for their efficient, environmentally sustainable production in enantiomerically pure form. This proposal seeks to provide new catalytic chemical methods including 1) the catalytic, enantioselective synthesis of peptides and 2) catalytic methods for the preparation of enantiopure nitrogen-containing heterocycles. The proposed work features innovative chemistry including novel reaction mechanism and catalysts. These methods have far reaching applications for the sustainable production of valuable compounds as well as fundamental science."
Summary
"Amines and their acylated derivatives – amides – are among the most common chemical functional groups found in modern pharmaceuticals. Despite this there are few methods for their efficient, environmentally sustainable production in enantiomerically pure form. This proposal seeks to provide new catalytic chemical methods including 1) the catalytic, enantioselective synthesis of peptides and 2) catalytic methods for the preparation of enantiopure nitrogen-containing heterocycles. The proposed work features innovative chemistry including novel reaction mechanism and catalysts. These methods have far reaching applications for the sustainable production of valuable compounds as well as fundamental science."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym ESSOG
Project Extracting science from surveys of our Galaxy
Researcher (PI) James Jeffrey Binney
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE9, ERC-2012-ADG_20120216
Summary "The goal is to put in place the infrastructure required to extract the promised science for large surveys of our Galaxy that are underway and will culminate in ESA's Cornerstone Mission Gaia. Dynamical models are fundamental to this process because surveys are heavily biased by the Sun's location in the Galaxy. Novel dynamical models will be built and novel methods of fitting them to the data developed. With their help we will be able to constrain the distribution of dark matter in the Galaxy. By modelling the chemical and dynamical evolution of the Galaxy we expect to be able to infer much information about how the Galaxy was assembled, and thus test the prevailing cosmological paradigm. During the grant period we will be applying our tools to ground-based surveys, but the first version of the Gaia Catalogue will become available at the end of the grant period, and our goal is to have everything ready and tested for its prompt exploitation."
Summary
"The goal is to put in place the infrastructure required to extract the promised science for large surveys of our Galaxy that are underway and will culminate in ESA's Cornerstone Mission Gaia. Dynamical models are fundamental to this process because surveys are heavily biased by the Sun's location in the Galaxy. Novel dynamical models will be built and novel methods of fitting them to the data developed. With their help we will be able to constrain the distribution of dark matter in the Galaxy. By modelling the chemical and dynamical evolution of the Galaxy we expect to be able to infer much information about how the Galaxy was assembled, and thus test the prevailing cosmological paradigm. During the grant period we will be applying our tools to ground-based surveys, but the first version of the Gaia Catalogue will become available at the end of the grant period, and our goal is to have everything ready and tested for its prompt exploitation."
Max ERC Funding
1 954 460 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym INNODYN
Project Integrated Analysis & Design in Nonlinear Dynamics
Researcher (PI) Jakob Soendergaard Jensen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Summary
Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Max ERC Funding
823 992 €
Duration
Start date: 2012-02-01, End date: 2016-01-31
Project acronym M4D
Project Metal Microstructures in Four Dimensions
Researcher (PI) Dorte JUUL JENSEN
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The goals are:
1) to develop a universal laboratory-based 4D X-ray microscope with potentials in the broad field of materials science and beyond;
2) to advance metal research by quantifying local microstructural variations using the new 4D tool and by including the effects hereof in the understanding and modelling of industrially relevant metals.
Today, high resolution 4D (x,y,z,time) crystallographic characterization of materials is possible only at large international facilities. This is a serious limitation preventing the common use. The new technique will allow such 4D characterization to be carried out at home laboratories, thereby wide spreading this powerful tool.
Whereas current metal research mainly focuses on average properties, local microstructural variations are present in all metals on several length scales, and are often of critical importance for the properties and performance of the metal. In this project, the new technique will be the cornerstone in studies of such variations in three types of metallic materials: 3D printed, multilayered and micrometre-scale metals. Effects of local variations on the subsequent microstructural evolution will be followed during deformation and annealing, i.e. during processes typical for manufacturing, and occurring during in-service operation.
Current models largely ignore the presence of local microstructural variations and lack predictive power. Based on the new experimental data, three models operating on different length scales will be improved and combined, namely crystal plasticity finite element, phase field and molecular dynamics models. The main novelty here relates to the full 4D validation of the models, which has not been possible hitherto because of lack of sufficient experimental data.
The resulting fundamental understanding of the inherent microstructural variations and the new models are foreseen to be an integral part of the future design of metallic materials for high performance applications.
Summary
The goals are:
1) to develop a universal laboratory-based 4D X-ray microscope with potentials in the broad field of materials science and beyond;
2) to advance metal research by quantifying local microstructural variations using the new 4D tool and by including the effects hereof in the understanding and modelling of industrially relevant metals.
Today, high resolution 4D (x,y,z,time) crystallographic characterization of materials is possible only at large international facilities. This is a serious limitation preventing the common use. The new technique will allow such 4D characterization to be carried out at home laboratories, thereby wide spreading this powerful tool.
Whereas current metal research mainly focuses on average properties, local microstructural variations are present in all metals on several length scales, and are often of critical importance for the properties and performance of the metal. In this project, the new technique will be the cornerstone in studies of such variations in three types of metallic materials: 3D printed, multilayered and micrometre-scale metals. Effects of local variations on the subsequent microstructural evolution will be followed during deformation and annealing, i.e. during processes typical for manufacturing, and occurring during in-service operation.
Current models largely ignore the presence of local microstructural variations and lack predictive power. Based on the new experimental data, three models operating on different length scales will be improved and combined, namely crystal plasticity finite element, phase field and molecular dynamics models. The main novelty here relates to the full 4D validation of the models, which has not been possible hitherto because of lack of sufficient experimental data.
The resulting fundamental understanding of the inherent microstructural variations and the new models are foreseen to be an integral part of the future design of metallic materials for high performance applications.
Max ERC Funding
2 496 519 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym MatMech
Project Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies
Researcher (PI) Kirsten Marie oernsbjerg Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.
Summary
With this proposal, I want to develop a new, multimodal approach to in situ X-ray scattering studies to unravel formation mechanisms of the solid state. The aim of the project is to develop a unified view of metal oxide nucleation processes on the atomic scale: From precursor complexes over pre-nucelation clusters to the final crystalline particle.
The development of new materials relies on our understanding of the relation between material structure, properties and synthesis. While the intense focus on ‘materials by design’ have made it possible to predict the properties of many materials given an atomic arrangement, actually knowing how to synthesize it is a completely different story. Material synthesis methods are to a large degree developed by extensive parameter studies based on trial-and-error experiments. Specifically, our knowledge of particle nucleation is lacking, as even non-classical views on nucleation such as the concept of pre-nucleation clusters do not apply an atomistic view of the formation process. Here, I want to use new methods in X-ray total scattering and Pair Distribution Function analysis to follow nucleation processes to establish the framework needed for predictive material synthesis. One of the large challenges in studying nucleation is the lack of a characterization method that can give structural information on materials without long-range order. I have demonstrated that time-resolved X-ray total scattering gives new possibilities for following structural changes in a synthesis, and the use of total scattering has opened for a new view on material formation. However, the complexity of the structures involved in nucleation processes is too large to obtain sufficient information from X-ray total scattering alone. Here, I will combine X-ray total scattering data with complementary techniques using a new multimodal approach for complex modelling analysis, providing a unifying view on material nucleation.
Max ERC Funding
1 493 269 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym WATERUNDERTHEICE
Project Where is the water under the Greenland ice sheet?
Researcher (PI) Dorthe Dahl-Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Summary
Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Max ERC Funding
2 499 999 €
Duration
Start date: 2010-01-01, End date: 2015-12-31