Project acronym CASINO
Project Carbohydrate signals controlling nodulation
Researcher (PI) Jens Stougaard Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Summary
Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Max ERC Funding
2 399 127 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym EURECA
Project Eukaryotic Regulated RNA Catabolism
Researcher (PI) Torben Heick Jensen
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Summary
"Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Max ERC Funding
2 497 960 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym HBAR12
Project Spectroscopy of Trapped Antihydrogen
Researcher (PI) Jeffrey Scott Hangst
Host Institution (HI) AARHUS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Antihydrogen is the only stable, neutral antimatter system available for laboratory study. Recently, the ALPHA Collaboration at CERN has succeeded in synthesizing and trapping antihydrogen atoms, storing them for up to 1000 s, and performing the first resonant spectroscopy, using microwaves, on trapped antihydrogen. This last, historic result paves the way for precision microwave and laser spectroscopic measurements using small numbers of trapped antihydrogen atoms. Because of the breakthroughs made in our collaboration, it is now possible, for the first time, to design antimatter spectroscopic experiments that have achievable milestones of precision. These measurements require a next-generation apparatus, known as ALPHA-2, which is the subject of this proposal. The items sought are hardware components and radiation sources to help us to test CPT (charge conjugation, parity, time reversal) symmetry invariance by comparing the spectrum of antihydrogen to that of hydrogen. More generally, we will address the very fundamental question: do matter and antimatter obey the same laws of physics? The Standard Model says that they must, but mystery continues to cloud our understanding of antimatter - as evidenced by the unexplained baryon asymmetry in the universe. ALPHA's experiments offer a unique, high precision, model-independent view into the internal workings of antimatter.
Summary
Antihydrogen is the only stable, neutral antimatter system available for laboratory study. Recently, the ALPHA Collaboration at CERN has succeeded in synthesizing and trapping antihydrogen atoms, storing them for up to 1000 s, and performing the first resonant spectroscopy, using microwaves, on trapped antihydrogen. This last, historic result paves the way for precision microwave and laser spectroscopic measurements using small numbers of trapped antihydrogen atoms. Because of the breakthroughs made in our collaboration, it is now possible, for the first time, to design antimatter spectroscopic experiments that have achievable milestones of precision. These measurements require a next-generation apparatus, known as ALPHA-2, which is the subject of this proposal. The items sought are hardware components and radiation sources to help us to test CPT (charge conjugation, parity, time reversal) symmetry invariance by comparing the spectrum of antihydrogen to that of hydrogen. More generally, we will address the very fundamental question: do matter and antimatter obey the same laws of physics? The Standard Model says that they must, but mystery continues to cloud our understanding of antimatter - as evidenced by the unexplained baryon asymmetry in the universe. ALPHA's experiments offer a unique, high precision, model-independent view into the internal workings of antimatter.
Max ERC Funding
2 136 888 €
Duration
Start date: 2013-05-01, End date: 2018-12-31
Project acronym WATERUNDERTHEICE
Project Where is the water under the Greenland ice sheet?
Researcher (PI) Dorthe Dahl-Jensen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Summary
Recent analysis of radar-depth sounder data has shown that many areas of the Greenland ice sheet have melt water under the base. The extent of the wet base and distribution of melt water are poorly known. Also lakes under the ice have not been discovered in contrast with those in Antarctica. The effect of the water beneath the ice, however, is well documented: it lubricates the bed and removes the friction between the basal ice and underlying bedrock. The ice with a wet bed flows faster, reacts rapidly to changes in climate and the basal-melt water contributes to the fresh-water supply to the ocean from the Greenland ice sheet. The primary objectives of the project are to map melt water extent of the Greenland ice sheet and its impact by tracing internal layers and analyzing bedrock returns from airborne radio-echo sounding data, and use mapping results in conjunction with ice-sheet and hydrostatic models for the movement of the basal water to predict the ice-sheet s response to climate change. The information derived from deep ice-cores that reach the bed will be used to constrain models. We will also study the basal material (dust, DNA and microbiological material) and bedrock properties from the deep-ice core sites. This will add a further dimension to the study and provide opportunities to look for life under the ice and constrain the age of the Greenland ice sheet. The proposed research is a high risk project because of the difficulty in accessing basal conditions under 3-km of ice with a potential for high payoff science. The team will consist of scientists and engineers with expertise in the palaeoclimate, radar sounding and signal processing, and ice-sheet models.
Max ERC Funding
2 499 999 €
Duration
Start date: 2010-01-01, End date: 2015-12-31